These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28732863)

  • 1. A novel, cost-effective and eco-friendly method for preparation of textile fibers from cellulosic pulps.
    Alam MN; Christopher LP
    Carbohydr Polym; 2017 Oct; 173():253-258. PubMed ID: 28732863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production process of a new cellulosic fiber with antimicrobial properties.
    Zikeli S
    Curr Probl Dermatol; 2006; 33():110-26. PubMed ID: 16766884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Biobased Textile Fiber from Colombian Agro-Industrial Waste Fiber.
    Amaya Vergara MC; Cortés Gómez MP; Restrepo Restrepo MC; Manrique Henao J; Pereira Soto MA; Gañán Rojo PF; Castro Herazo CI; Zuluaga Gallego R
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30326560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles.
    Jeihanipour A; Karimi K; Niklasson C; Taherzadeh MJ
    Waste Manag; 2010 Dec; 30(12):2504-9. PubMed ID: 20692142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of rayon fibres from cellulosic pulps: State of the art and current developments.
    Mendes ISF; Prates A; Evtuguin DV
    Carbohydr Polym; 2021 Dec; 273():118466. PubMed ID: 34560932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulosic paper with high antioxidative and barrier properties obtained through incorporation of tannin into kraft pulp fibers.
    Ji Y; Xu Q; Jin L; Fu Y
    Int J Biol Macromol; 2020 Nov; 162():678-684. PubMed ID: 32544590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A triple-crosslinking strategy for high-performance regenerated cellulose fibers derived from waste cotton textiles.
    Huang Z; Tong A; Xing T; He A; Luo Y; Zhang Y; Wang M; Qiao S; Shi Z; Chen F; Xu W
    Int J Biol Macromol; 2024 Apr; 264(Pt 2):130779. PubMed ID: 38471604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and Hygroscopic Properties of Molded Pulp Products Using Different Wood-Based Cellulose Fibers.
    Dislaire C; Seantier B; Muzy M; Grohens Y
    Polymers (Basel); 2021 Sep; 13(19):. PubMed ID: 34641043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater.
    Aravind P; Subramanyan V; Ferro S; Gopalakrishnan R
    Water Res; 2016 Apr; 93():230-241. PubMed ID: 26921849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production and Characterization of Cellulosic Pulp from Mango Agro-Industrial Waste and Potential Applications.
    García-Mahecha M; Soto-Valdez H; Peralta E; Carvajal-Millan E; Madera-Santana TJ; Lomelí-Ramírez MG; Colín-Chávez C
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effects of raw materials and solvent systems on the preparation and properties of regenerated cellulose fibers.
    Chen J; Guan Y; Wang K; Zhang X; Xu F; Sun R
    Carbohydr Polym; 2015 Sep; 128():147-53. PubMed ID: 26005150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of cellulosic fibers by enzymatic process.
    Shojaei KM; Dadashian F; Montazer M
    Appl Biochem Biotechnol; 2012 Feb; 166(3):744-52. PubMed ID: 22161212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From Wood to Textiles: Top-Down Assembly of Aligned Cellulose Nanofibers.
    Jia C; Chen C; Kuang Y; Fu K; Wang Y; Yao Y; Kronthal S; Hitz E; Song J; Xu F; Liu B; Hu L
    Adv Mater; 2018 Jul; 30(30):e1801347. PubMed ID: 29882337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.
    Asaadi S; Hummel M; Hellsten S; Härkäsalmi T; Ma Y; Michud A; Sixta H
    ChemSusChem; 2016 Nov; 9(22):3250-3258. PubMed ID: 27796085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun Ultrafine Cationic Cellulose Fibers Produced from Sugarcane Bagasse for Potential Textile Applications.
    Ochica Larrota AF; Vera-Graziano R; López-Córdoba A; Gómez-Pachón EY
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid hydrolysis of cellulosic fibres: Comparison of bleached kraft pulp, dissolving pulps and cotton textile cellulose.
    Palme A; Theliander H; Brelid H
    Carbohydr Polym; 2016 Jan; 136():1281-7. PubMed ID: 26572472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of nanofibrillation of softwood cellulosic fibers by oxidation and sulfonation.
    Pan S; Ragauskas AJ
    Carbohydr Polym; 2014 Oct; 111():514-23. PubMed ID: 25037382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, structural design, and applications.
    Sun X; Jiang F
    Carbohydr Polym; 2024 Oct; 341():122305. PubMed ID: 38876711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resource-Saving Production of Dialdehyde Cellulose: Optimization of the Process at High Pulp Consistency.
    Lucia A; van Herwijnen HWG; Oberlerchner JT; Rosenau T; Beaumont M
    ChemSusChem; 2019 Oct; 12(20):4679-4684. PubMed ID: 31373765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers.
    Haslinger S; Hummel M; Anghelescu-Hakala A; Määttänen M; Sixta H
    Waste Manag; 2019 Sep; 97():88-96. PubMed ID: 31447031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.