BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28732921)

  • 1. Glass transition of anhydrous starch by fast scanning calorimetry.
    Monnier X; Maigret JE; Lourdin D; Saiter A
    Carbohydr Polym; 2017 Oct; 173():77-83. PubMed ID: 28732921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glass transitions and physical aging of cassava starch - corn oil blends.
    Pérez A; Sandoval AJ; Cova A; Müller AJ
    Carbohydr Polym; 2014 May; 105():244-52. PubMed ID: 24708977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glass transition and enthalpy relaxation of amorphous lactose glass.
    Haque MK; Kawai K; Suzuki T
    Carbohydr Res; 2006 Aug; 341(11):1884-9. PubMed ID: 16709405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of glassy-state dynamics from the width of the glass transition: results from theoretical simulation of differential scanning calorimetry and comparisons with experiment.
    Pikal MJ; Chang LL; Tang XC
    J Pharm Sci; 2004 Apr; 93(4):981-94. PubMed ID: 14999734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass transition temperatures and crystallization kinetics of a synthetic, anhydrous, amorphous calcium-magnesium carbonate.
    Hess KU; Schawe JEK; Wilding M; Purgstaller B; Goetschl KE; Sturm S; Müller-Caspary K; Sturm EV; Schmahl W; Griesshaber E; Bissbort T; Weidendorfer D; Dietzel M; Dingwell DB
    Philos Trans A Math Phys Eng Sci; 2023 Oct; 381(2258):20220356. PubMed ID: 37634535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of dynamics in complex lyophilized formulations: I. Comparison of relaxation times measured by isothermal calorimetry with data estimated from the width of the glass transition temperature region.
    Chieng N; Mizuno M; Pikal M
    Eur J Pharm Biopharm; 2013 Oct; 85(2):189-96. PubMed ID: 23608636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of sucrose and water content on molecular mobility in starch-based glasses as assessed through structure and secondary relaxation.
    Poirier-Brulez F; Roudaut G; Champion D; Tanguy M; Simatos D
    Biopolymers; 2006 Feb; 81(2):63-73. PubMed ID: 16127661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitrification of two active pharmaceutical ingredients by fast scanning calorimetry: From structural relaxation to nucleation phenomena.
    Monnier X; Viel Q; Schammé B; Petit S; Delbreilh L; Dupray V; Coquerel G; Dargent E
    Int J Pharm; 2018 Jan; 536(1):426-433. PubMed ID: 29225097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical aging of starch, maltodextrin, and maltose.
    Noel TR; Parker R; Brownsey GJ; Farhat IA; MacNaughtan W; Ring SG
    J Agric Food Chem; 2005 Nov; 53(22):8580-5. PubMed ID: 16248556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase separation in amorphous hydrophobically modified starch-sucrose blends: Glass transition, matrix dynamics and phase behavior.
    Hughes DJ; Bönisch GB; Zwick T; Schäfer C; Tedeschi C; Leuenberger B; Martini F; Mencarini G; Geppi M; Alam MA; Ubbink J
    Carbohydr Polym; 2018 Nov; 199():1-10. PubMed ID: 30143108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glass fragility and the stability of pharmaceutical preparations--excipient selection.
    Hatley RH
    Pharm Dev Technol; 1997 Aug; 2(3):257-64. PubMed ID: 9552453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of the glass transition of an amorphous drug using modulated DSC.
    Royall PG; Craig DQ; Doherty C
    Pharm Res; 1998 Jul; 15(7):1117-21. PubMed ID: 9688069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observation of the enthalpy relaxation and the recovery processes of maltose-based amorphous formulation by isothermal microcalorimetry.
    Kawakami K; Ida Y
    Pharm Res; 2003 Sep; 20(9):1430-6. PubMed ID: 14567638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical Ageing of Amorphous Indapamide Characterised by Differential Scanning Calorimetry.
    Drogoń A; Skotnicki M; Skotnicka A; Pyda M
    Pharmaceutics; 2020 Aug; 12(9):. PubMed ID: 32854214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of physical aging on nucleation of amorphous indomethacin.
    Vyazovkin S; Dranca I
    J Phys Chem B; 2007 Jun; 111(25):7283-7. PubMed ID: 17530880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid assessment of the structural relaxation behavior of amorphous pharmaceutical solids: effect of residual water on molecular mobility.
    Miller DP; Lechuga-Ballesteros D
    Pharm Res; 2006 Oct; 23(10):2291-305. PubMed ID: 16955371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the Structural Relaxation Enthalpy Using a Mathematical Approach.
    Flügel K; Hennig R; Thommes M
    J Pharm Sci; 2019 Nov; 108(11):3675-3683. PubMed ID: 31449818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of amorphous ketoconazole using modulated temperature differential scanning calorimetry.
    Van Den Mooter G; Craig DQ; Royall PG
    J Pharm Sci; 2001 Aug; 90(8):996-1003. PubMed ID: 11536203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enthalpy relaxation of freeze concentrated sucrose-water glass.
    Inoue C; Suzuki T
    Cryobiology; 2006 Feb; 52(1):83-9. PubMed ID: 16321366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-controlled and "diffusionless" crystal growth near the glass transition temperature: relation between liquid dynamics and growth kinetics of seven ROY polymorphs.
    Sun Y; Xi H; Ediger MD; Richert R; Yu L
    J Chem Phys; 2009 Aug; 131(7):074506. PubMed ID: 19708750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.