BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28732923)

  • 1. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose.
    Mhd Haniffa MAC; Ching YC; Chuah CH; Yong Ching K; Nazri N; Abdullah LC; Nai-Shang L
    Carbohydr Polym; 2017 Oct; 173():91-99. PubMed ID: 28732923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical isolation and characterization of different cellulose nanofibers from cotton stalks.
    Soni B; Hassan el B; Mahmoud B
    Carbohydr Polym; 2015 Dec; 134():581-9. PubMed ID: 26428161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of structural, thermal and proton conductivity properties of micro- and nanocelluloses.
    Jankowska I; Pankiewicz R; Pogorzelec-Glaser K; Ławniczak P; Łapiński A; Tritt-Goc J
    Carbohydr Polym; 2018 Nov; 200():536-542. PubMed ID: 30177195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.
    Soni B; Hassan EB; Schilling MW; Mahmoud B
    Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments.
    Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(3-hydroxybutyrate) Modified by Plasma and TEMPO-Oxidized Celluloses.
    Panaitescu DM; Vizireanu S; Stoian SA; Nicolae CA; Gabor AR; Damian CM; Trusca R; Carpen LG; Dinescu G
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32646005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the production and physicochemical properties of oxycellulose microcrystalline with coexisting crystalline forms.
    Ahmed-Haras MR; Kao N; Ward L; Islam MS
    Int J Biol Macromol; 2020 Mar; 146():150-161. PubMed ID: 31837363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.
    Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H
    Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose.
    Carlsson DO; Hua K; Forsgren J; Mihranyan A
    Int J Pharm; 2014 Jan; 461(1-2):74-81. PubMed ID: 24291076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose.
    Rohaizu R; Wanrosli WD
    Ultrason Sonochem; 2017 Jan; 34():631-639. PubMed ID: 27773290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hevea brasiliensis mediated synthesis of nanocellulose: Effect of preparation methods on morphology and properties.
    Onkarappa HS; Prakash GK; Pujar GH; Rajith Kumar CR; Latha MS; Betageri VS
    Int J Biol Macromol; 2020 Oct; 160():1021-1028. PubMed ID: 32504707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical Properties of Nanocellulose Isolated from Cotton Stalk Waste.
    Li M; He B; Chen Y; Zhao L
    ACS Omega; 2021 Oct; 6(39):25162-25169. PubMed ID: 34632175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcing canola protein matrix with chemically tailored nanocrystalline cellulose improves the functionality of canola protein-based packaging materials.
    Dissanayake T; Peng Chang B; Mekonnen TH; Senaka Ranadheera C; Narvaez-Bravo C; Bandara N
    Food Chem; 2022 Jul; 383():132618. PubMed ID: 35255367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites.
    Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F
    Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II).
    Zhou Y; Fu S; Zhang L; Zhan H; Levit MV
    Carbohydr Polym; 2014 Jan; 101():75-82. PubMed ID: 24299751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of nanocellulose from Imperata brasiliensis grass using Taguchi method.
    Benini KCCC; Voorwald HJC; Cioffi MOH; Rezende MC; Arantes V
    Carbohydr Polym; 2018 Jul; 192():337-346. PubMed ID: 29691029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of cellulose nanocrystals from Chinese medicine residues.
    He Q; Bai Y; Lu Y; Cui B; Huang Z; Yang Q; Jiang D; Shao D
    Biomass Convers Biorefin; 2022 Oct; ():1-10. PubMed ID: 36259074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different Preparation Method of Nanocellulose from Macaranga gigantea and Its Preliminary Study on Packaging Film Potential.
    Jasmani L; Jamaluddin NAN; Rusli R; Adnan S; Zakaria S
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of surface charge density on the ice recrystallization inhibition activity of nanocelluloses.
    Li T; Zhong Q; Zhao B; Lenaghan S; Wang S; Wu T
    Carbohydr Polym; 2020 Apr; 234():115863. PubMed ID: 32070502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.
    Tian C; Yi J; Wu Y; Wu Q; Qing Y; Wang L
    Carbohydr Polym; 2016 Jan; 136():485-92. PubMed ID: 26572379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.