These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 28732989)

  • 1. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer.
    Joshi S; Gogate PR; Moreira PF; Giudici R
    Ultrason Sonochem; 2017 Nov; 39():645-653. PubMed ID: 28732989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst.
    Pukale DD; Maddikeri GL; Gogate PR; Pandit AB; Pratap AP
    Ultrason Sonochem; 2015 Jan; 22():278-86. PubMed ID: 24935026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodiesel production as a solution to waste cooking oil (WCO) disposal. Will any type of WCO do for a transesterification process? A quality assessment.
    Cordero-Ravelo V; Schallenberg-Rodriguez J
    J Environ Manage; 2018 Dec; 228():117-129. PubMed ID: 30212669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of waste derived magnetic acid-base bifunctional CoFe/biochar/CaO as an efficient catalyst for biodiesel production from waste cooking oil.
    Xia S; Tao J; Zhao Y; Men Y; Chen C; Hu Y; Zhu G; Chu Y; Yan B; Chen G
    Chemosphere; 2024 Feb; 350():141104. PubMed ID: 38171400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waste cooking oil and waste chicken eggshells derived solid base catalyst for the biodiesel production: Optimization and kinetics.
    Gupta AR; Rathod VK
    Waste Manag; 2018 Sep; 79():169-178. PubMed ID: 30343743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodiesel Production from Waste Cooking Oil via β-Zeolite-Supported Sulfated Metal Oxide Catalyst Systems.
    Yusuf BO; Oladepo SA; Ganiyu SA
    ACS Omega; 2023 Jul; 8(26):23720-23732. PubMed ID: 37426238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: Optimization and E-metrics studies.
    Sahani S; Roy T; Sharma YC
    Waste Manag; 2020 May; 108():189-201. PubMed ID: 32360999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell.
    Kedir WM; Wondimu KT; Weldegrum GS
    Heliyon; 2023 May; 9(5):e16475. PubMed ID: 37305456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biodiesel production from waste cooking palm oil, with NaOH-loaded Calcined fish bones as the catalyst.
    Chinglenthoiba C; Das A; Vandana S
    Environ Sci Pollut Res Int; 2020 May; 27(13):15925-15930. PubMed ID: 32207016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk.
    Li M; Zheng Y; Chen Y; Zhu X
    Bioresour Technol; 2014 Feb; 154():345-8. PubMed ID: 24405650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of Ficus carica leaves as a heterogeneous catalyst for production of biodiesel from waste cooking oil.
    Kamel DA; Farag HA; Amin NK; Zatout AA; Fouad YO
    Environ Sci Pollut Res Int; 2019 Nov; 26(32):32804-32814. PubMed ID: 31502052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valorization of hazardous waste cooking oil for the production of eco-friendly biodiesel using a low-cost bifunctional catalyst.
    Bora AP; Konda LDNVV; Paluri P; Durbha KS
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55596-55614. PubMed ID: 36897444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensification of esterification of non edible oil as sustainable feedstock using cavitational reactors.
    Mohod AV; Subudhi AS; Gogate PR
    Ultrason Sonochem; 2017 May; 36():309-318. PubMed ID: 28069215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards sustainable biodiesel production by solar intensification of waste cooking oil and engine parameter assessment studies.
    Sivarethinamohan S; Hanumanthu JR; Gaddam K; Ravindiran G; Alagumalai A
    Sci Total Environ; 2022 Jan; 804():150236. PubMed ID: 34520913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-transesterification of waste cooking oil, algal oil and dimethyl carbonate over sustainable nanoparticle catalysts.
    Li F; Hülsey MJ; Yan N; Dai Y; Wang CH
    Chem Eng J; 2021 Feb; 405():127036. PubMed ID: 32958996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transesterification of waste cooking oil using pyrolysis residue supported eggshell catalyst.
    Gollakota ARK; Volli V; Shu CM
    Sci Total Environ; 2019 Apr; 661():316-325. PubMed ID: 30677679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intensification and optimization of biodiesel production using microwave-assisted acid-organo catalyzed transesterification process.
    Athar M; Zaidi S; Hassan SZ
    Sci Rep; 2020 Dec; 10(1):21239. PubMed ID: 33277519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved biodiesel production from waste cooking oil with mixed methanol-ethanol using enhanced eggshell-derived CaO nano-catalyst.
    Erchamo YS; Mamo TT; Workneh GA; Mekonnen YS
    Sci Rep; 2021 Mar; 11(1):6708. PubMed ID: 33758293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound assisted intensification of biodiesel production using enzymatic interesterification.
    Subhedar PB; Gogate PR
    Ultrason Sonochem; 2016 Mar; 29():67-75. PubMed ID: 26584986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodiesel synthesized from waste cooking oil in a continuous microwave assisted reactor reduced PM and NOx emissions.
    Mohd Ali MA; Gimbun J; Lau KL; Cheng CK; Vo DN; Lam SS; Yunus RM
    Environ Res; 2020 Jun; 185():109452. PubMed ID: 32259725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.