These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 28733089)

  • 1. A computational protocol for the discovery of lead molecules targeting DNA unique to pathogens.
    Mishra A; Pant P; Mrinal N; Jayaram B
    Methods; 2017 Dec; 131():4-9. PubMed ID: 28733089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-iDT : tool for identification of drug target in bacteria and validation by Mycobacterium tuberculosis.
    Singh NK; Selvam SM; Chakravarthy P
    In Silico Biol; 2006; 6(6):485-93. PubMed ID: 17518759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics.
    Fang Z; van der Merwe RG; Warren RM; Schubert WD; Gey van Pittius NC
    Tuberculosis (Edinb); 2015 Mar; 95(2):131-6. PubMed ID: 25578513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural genomics approach to drug discovery for Mycobacterium tuberculosis.
    Ioerger TR; Sacchettini JC
    Curr Opin Microbiol; 2009 Jun; 12(3):318-25. PubMed ID: 19481971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure based drug discovery for designing leads for the non-toxic metabolic targets in multi drug resistant Mycobacterium tuberculosis.
    Kaur D; Mathew S; Nair CGS; Begum A; Jainanarayan AK; Sharma M; Brahmachari SK
    J Transl Med; 2017 Dec; 15(1):261. PubMed ID: 29268770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function and structure-based screening of compounds, peptides and proteins to identify drug candidates.
    Malik V; Dhanjal JK; Kumari A; Radhakrishnan N; Singh K; Sundar D
    Methods; 2017 Dec; 131():10-21. PubMed ID: 28843611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico discovery and biological validation of ligands of FAD synthase, a promising new antimicrobial target.
    Lans I; Anoz-Carbonell E; Palacio-Rodríguez K; Aínsa JA; Medina M; Cossio P
    PLoS Comput Biol; 2020 Aug; 16(8):e1007898. PubMed ID: 32797038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast three-hybrid screening for identifying anti-tuberculosis drug targets.
    Moser S; Johnsson K
    Chembiochem; 2013 Nov; 14(17):2239-42. PubMed ID: 24133019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in genomics, bioinformatics and drug discovery to combat emerging drug-resistant tuberculosis.
    Swaminathan S; Sundaramurthi JC; Palaniappan AN; Narayanan S
    Tuberculosis (Edinb); 2016 Dec; 101():31-40. PubMed ID: 27865394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subtractive genomics approach to identify putative drug targets and identification of drug-like molecules for beta subunit of DNA polymerase III in Streptococcus species.
    Georrge JJ; Umrania VV
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1377-95. PubMed ID: 22415782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advancements in the development of anti-tuberculosis drugs.
    Chetty S; Ramesh M; Singh-Pillay A; Soliman ME
    Bioorg Med Chem Lett; 2017 Feb; 27(3):370-386. PubMed ID: 28017531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate.
    Ghosh S; Prava J; Samal HB; Suar M; Mahapatra RK
    J Microbiol Methods; 2014 Jun; 101():1-8. PubMed ID: 24685600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sanjeevini: a freely accessible web-server for target directed lead molecule discovery.
    Jayaram B; Singh T; Mukherjee G; Mathur A; Shekhar S; Shekhar V
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S7. PubMed ID: 23282245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycobacterial DNA Replication as a Target for Antituberculosis Drug Discovery.
    Płocinska R; Korycka-Machala M; Plocinski P; Dziadek J
    Curr Top Med Chem; 2017 Jun; 17(19):2129-2142. PubMed ID: 28137234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Onco-Regulon: an integrated database and software suite for site specific targeting of transcription factors of cancer genes.
    Tomar N; Mishra A; Mrinal N; Jayaram B
    Database (Oxford); 2016; 2016():. PubMed ID: 27515825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning and docking models for Mycobacterium tuberculosis topoisomerase I.
    Ekins S; Godbole AA; Kéri G; Orfi L; Pato J; Bhat RS; Verma R; Bradley EK; Nagaraja V
    Tuberculosis (Edinb); 2017 Mar; 103():52-60. PubMed ID: 28237034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of Mycobacterium tuberculosis whole cell screening hits as potential antituberculosis agents.
    Cooper CB
    J Med Chem; 2013 Oct; 56(20):7755-60. PubMed ID: 23927683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU.
    Rani C; Mehra R; Sharma R; Chib R; Wazir P; Nargotra A; Khan IA
    Tuberculosis (Edinb); 2015 Dec; 95(6):664-677. PubMed ID: 26318557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Genome and Network Centrality Analysis to Identify Drug Targets of Mycobacterium tuberculosis H37Rv.
    Melak T; Gakkhar S
    Biomed Res Int; 2015; 2015():212061. PubMed ID: 26618166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.