These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 28733288)
1. Bacillomycin D Produced by Bacillus amyloliquefaciens Is Involved in the Antagonistic Interaction with the Plant-Pathogenic Fungus Fusarium graminearum. Gu Q; Yang Y; Yuan Q; Shi G; Wu L; Lou Z; Huo R; Wu H; Borriss R; Gao X Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733288 [No Abstract] [Full Text] [Related]
2. Fengycin Produced by Hanif A; Zhang F; Li P; Li C; Xu Y; Zubair M; Zhang M; Jia D; Zhao X; Liang J; Majid T; Yan J; Farzand A; Wu H; Gu Q; Gao X Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31137632 [No Abstract] [Full Text] [Related]
3. Antifungal efficacy of Bacillus amyloliquefaciens ZK-9 against Fusarium graminearum and analysis of the potential mechanism of its lipopeptides. Yi Y; Luan P; Fan M; Wu X; Sun Z; Shang Z; Yang Y; Li C Int J Food Microbiol; 2024 Sep; 422():110821. PubMed ID: 38970998 [TBL] [Abstract][Full Text] [Related]
4. Antifungal potential of lipopeptides produced by the Hussain S; Tai B; Ali M; Jahan I; Sakina S; Wang G; Zhang X; Yin Y; Xing F Microbiol Spectr; 2024 Apr; 12(4):e0400823. PubMed ID: 38451229 [TBL] [Abstract][Full Text] [Related]
5. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Xu Z; Shao J; Li B; Yan X; Shen Q; Zhang R Appl Environ Microbiol; 2013 Feb; 79(3):808-15. PubMed ID: 23160135 [TBL] [Abstract][Full Text] [Related]
6. Mycosubtilin Produced by Yu C; Liu X; Zhang X; Zhang M; Gu Y; Ali Q; Mohamed MSR; Xu J; Shi J; Gao X; Wu H; Gu Q Toxins (Basel); 2021 Nov; 13(11):. PubMed ID: 34822575 [No Abstract] [Full Text] [Related]
7. Thymol-based submicron emulsions exhibit antifungal activity against Fusarium graminearum and inhibit Fusarium head blight in wheat. Gill TA; Li J; Saenger M; Scofield SR J Appl Microbiol; 2016 Oct; 121(4):1103-16. PubMed ID: 27253757 [TBL] [Abstract][Full Text] [Related]
8. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. Gong AD; Li HP; Yuan QS; Song XS; Yao W; He WJ; Zhang JB; Liao YC PLoS One; 2015; 10(2):e0116871. PubMed ID: 25689464 [TBL] [Abstract][Full Text] [Related]
9. 5-Methoxyindole, a Chemical Homolog of Melatonin, Adversely Affects the Phytopathogenic Fungus Kong M; Liang J; Ali Q; Wen W; Wu H; Gao X; Gu Q Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681652 [No Abstract] [Full Text] [Related]
10. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
11. Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Ramarathnam R; Bo S; Chen Y; Fernando WG; Xuewen G; de Kievit T Can J Microbiol; 2007 Jul; 53(7):901-11. PubMed ID: 17898845 [TBL] [Abstract][Full Text] [Related]
12. Jiao R; Cai Y; He P; Munir S; Li X; Wu Y; Wang J; Xia M; He P; Wang G; Yang H; Karunarathna SC; Xie Y; He Y Front Cell Infect Microbiol; 2021; 11():598999. PubMed ID: 34222035 [No Abstract] [Full Text] [Related]
13. Biocontrol of Abbas A; Yli-Mattila T Toxins (Basel); 2022 Apr; 14(5):. PubMed ID: 35622546 [TBL] [Abstract][Full Text] [Related]
14. Systemic growth of F. graminearum in wheat plants and related accumulation of deoxynivalenol. Moretti A; Panzarini G; Somma S; Campagna C; Ravaglia S; Logrieco AF; Solfrizzo M Toxins (Basel); 2014 Apr; 6(4):1308-24. PubMed ID: 24727554 [TBL] [Abstract][Full Text] [Related]
15. Imidazolium salts with antifungal potential for the control of head blight of wheat caused by Fusarium graminearum. Ribas AD; Del Ponte EM; Dalbem AM; Dalla-Lana D; Bündchen C; Donato RK; Schrekker HS; Fuentefria AM J Appl Microbiol; 2016 Aug; 121(2):445-52. PubMed ID: 26972421 [TBL] [Abstract][Full Text] [Related]
16. Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Pan D; Mionetto A; Tiscornia S; Bettucci L Mycotoxin Res; 2015 Aug; 31(3):137-43. PubMed ID: 25956808 [TBL] [Abstract][Full Text] [Related]
17. Toxicity and action mechanisms of silver nanoparticles against the mycotoxin-producing fungus Jian Y; Chen X; Ahmed T; Shang Q; Zhang S; Ma Z; Yin Y J Adv Res; 2022 May; 38():1-12. PubMed ID: 35572400 [TBL] [Abstract][Full Text] [Related]
18. Synergistic Effects of [Ile⁷]Surfactin Homologues with Bacillomycin D in Suppression of Gray Mold Disease by Bacillus amyloliquefaciens Biocontrol Strain SD-32. Tanaka K; Amaki Y; Ishihara A; Nakajima H J Agric Food Chem; 2015 Jun; 63(22):5344-53. PubMed ID: 25976169 [TBL] [Abstract][Full Text] [Related]
19. Draft genome sequence of a lipopeptide-producing Bacillus amyloliquefaciens strain isolated from wheat field soil with antagonistic activity against azole-resistant Fusarium graminearum. Wang Y; Xu J; Shi J; Ma G; Wang G J Glob Antimicrob Resist; 2022 Jun; 29():555-557. PubMed ID: 34954102 [TBL] [Abstract][Full Text] [Related]
20. FgPfn participates in vegetative growth, sexual reproduction, pathogenicity, and fungicides sensitivity via affecting both microtubules and actin in the filamentous fungus Fusarium graminearum. Yuan Z; Li P; Yang X; Cai X; Wu L; Zhao F; Wen W; Zhou M; Hou Y PLoS Pathog; 2024 May; 20(5):e1012215. PubMed ID: 38701108 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]