These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 28733288)
21. Edeine B Kim B; Nguyen MV; Park J; Kim YS; Han JW; Lee J-Y; Jeon J; Son H; Choi GJ; Kim H mBio; 2024 Jul; 15(7):e0135124. PubMed ID: 38860787 [TBL] [Abstract][Full Text] [Related]
22. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways. Yun Y; Liu Z; Zhang J; Shim WB; Chen Y; Ma Z Environ Microbiol; 2014 Jul; 16(7):2023-37. PubMed ID: 24237706 [TBL] [Abstract][Full Text] [Related]
23. Novel Genetic Dysregulations and Oxidative Damage in Zubair M; Farzand A; Mumtaz F; Khan AR; Sheikh TMM; Haider MS; Yu C; Wang Y; Ayaz M; Gu Q; Gao X; Wu H Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34829976 [TBL] [Abstract][Full Text] [Related]
24. Inhibitory activity of bacterial lipopeptides against Fusarium oxysporum f.sp. Strigae. Assena MW; Pfannstiel J; Rasche F BMC Microbiol; 2024 Jun; 24(1):227. PubMed ID: 38937715 [TBL] [Abstract][Full Text] [Related]
25. Surfactin inhibits Fusarium graminearum by accumulating intracellular ROS and inducing apoptosis mechanisms. Liang C; Xi-Xi X; Yun-Xiang S; Qiu-Hua X; Yang-Yong L; Yuan-Sen H; Ke B World J Microbiol Biotechnol; 2023 Oct; 39(12):340. PubMed ID: 37821760 [TBL] [Abstract][Full Text] [Related]
26. Fitness Traits of Deoxynivalenol and Nivalenol-Producing Fusarium graminearum Species Complex Strains from Wheat. Nicolli CP; Machado FJ; Spolti P; Del Ponte EM Plant Dis; 2018 Jul; 102(7):1341-1347. PubMed ID: 30673560 [TBL] [Abstract][Full Text] [Related]
27. Effects of Kim YT; Monkhung S; Lee YS; Kim KY Can J Microbiol; 2019 Dec; 65(12):904-912. PubMed ID: 31479614 [No Abstract] [Full Text] [Related]
28. The impact of chitosan on the early metabolomic response of wheat to infection by Fusarium graminearum. Deshaies M; Lamari N; Ng CKY; Ward P; Doohan FM BMC Plant Biol; 2022 Feb; 22(1):73. PubMed ID: 35183130 [TBL] [Abstract][Full Text] [Related]
29. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Liu N; Fan F; Qiu D; Jiang L Fungal Genet Biol; 2013; 58-59():42-52. PubMed ID: 23994322 [TBL] [Abstract][Full Text] [Related]
30. Biocontrol and plant stimulating potential of novel strain Bacillus sp. PPM3 isolated from marine sediment. Radovanović N; Milutinović M; Mihajlovski K; Jović J; Nastasijević B; Rajilić-Stojanović M; Dimitrijević-Branković S Microb Pathog; 2018 Jul; 120():71-78. PubMed ID: 29709685 [TBL] [Abstract][Full Text] [Related]
32. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
33. Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Kheiri A; Moosawi Jorf SA; Malihipour A; Saremi H; Nikkhah M Int J Biol Macromol; 2016 Dec; 93(Pt A):1261-1272. PubMed ID: 27664927 [TBL] [Abstract][Full Text] [Related]
34. Chemosensitization of Kim K; Lee Y; Ha A; Kim JI; Park AR; Yu NH; Son H; Choi GJ; Park HW; Lee CW; Lee T; Lee YW; Kim JC Front Plant Sci; 2017; 8():2010. PubMed ID: 29230232 [TBL] [Abstract][Full Text] [Related]
35. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Hou Z; Xue C; Peng Y; Katan T; Kistler HC; Xu JR Mol Plant Microbe Interact; 2002 Nov; 15(11):1119-27. PubMed ID: 12423017 [TBL] [Abstract][Full Text] [Related]
36. Ste2 receptor-mediated chemotropism of Fusarium graminearum contributes to its pathogenicity against wheat. Sridhar PS; Trofimova D; Subramaniam R; González-Peña Fundora D; Foroud NA; Allingham JS; Loewen MC Sci Rep; 2020 Jul; 10(1):10770. PubMed ID: 32612109 [TBL] [Abstract][Full Text] [Related]
37. Biocontrol of Fusarium graminearum growth and deoxynivalenol production in wheat kernels with bacterial antagonists. Shi C; Yan P; Li J; Wu H; Li Q; Guan S Int J Environ Res Public Health; 2014 Jan; 11(1):1094-105. PubMed ID: 24441510 [TBL] [Abstract][Full Text] [Related]
38. Bacillomycin D-C16 inhibits growth of Fusarium verticillioides and production of fumonisin B Lin F; Zhu X; Sun J; Meng F; Lu Z; Lu Y Pestic Biochem Physiol; 2022 Feb; 181():105015. PubMed ID: 35082038 [TBL] [Abstract][Full Text] [Related]
39. Biocontrol activity and putative mechanism of Bacillus amyloliquefaciens (SF14 and SP10), Alcaligenes faecalis ACBC1, and Pantoea agglomerans ACBP1 against brown rot disease of fruit. Lahlali R; Aksissou W; Lyousfi N; Ezrari S; Blenzar A; Tahiri A; Ennahli S; Hrustić J; MacLean D; Amiri S Microb Pathog; 2020 Feb; 139():103914. PubMed ID: 31811889 [TBL] [Abstract][Full Text] [Related]
40. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz. Jin P; Wang H; Tan Z; Xuan Z; Dahar GY; Li QX; Miao W; Liu W Pestic Biochem Physiol; 2020 Feb; 163():102-107. PubMed ID: 31973845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]