BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28733449)

  • 1. Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment.
    Lyra-Leite DM; Andres AM; Petersen AP; Ariyasinghe NR; Cho N; Lee JA; Gottlieb RA; McCain ML
    Am J Physiol Heart Circ Physiol; 2017 Oct; 313(4):H757-H767. PubMed ID: 28733449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix-guided control of mitochondrial function in cardiac myocytes.
    Lyra-Leite DM; Andres AM; Cho N; Petersen AP; Ariyasinghe NR; Kim SS; Gottlieb RA; McCain ML
    Acta Biomater; 2019 Oct; 97():281-295. PubMed ID: 31401347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial architecture in cardiac myocytes depends on cell shape and matrix rigidity.
    Lyra-Leite DM; Petersen AP; Ariyasinghe NR; Cho N; McCain ML
    J Mol Cell Cardiol; 2021 Jan; 150():32-43. PubMed ID: 33038389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility.
    McCain ML; Yuan H; Pasqualini FS; Campbell PH; Parker KK
    Am J Physiol Heart Circ Physiol; 2014 Jun; 306(11):H1525-39. PubMed ID: 24682394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes.
    Sheehy SP; Grosberg A; Qin P; Behm DJ; Ferrier JP; Eagleson MA; Nesmith AP; Krull D; Falls JG; Campbell PH; McCain ML; Willette RN; Hu E; Parker KK
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1643-1656. PubMed ID: 28343439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myofibrillar architecture in engineered cardiac myocytes.
    Parker KK; Tan J; Chen CS; Tung L
    Circ Res; 2008 Aug; 103(4):340-2. PubMed ID: 18635822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear morphology and deformation in engineered cardiac myocytes and tissues.
    Bray MA; Adams WJ; Geisse NA; Feinberg AW; Sheehy SP; Parker KK
    Biomaterials; 2010 Jul; 31(19):5143-50. PubMed ID: 20382423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing.
    Chopra A; Tabdanov E; Patel H; Janmey PA; Kresh JY
    Am J Physiol Heart Circ Physiol; 2011 Apr; 300(4):H1252-66. PubMed ID: 21257918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The expression and role of protein kinase C in neonatal cardiac myocyte attachment, cell volume, and myofibril formation is dependent on the composition of the extracellular matrix.
    Bullard TA; Borg TK; Price RL
    Microsc Microanal; 2005 Jun; 11(3):224-34. PubMed ID: 16060975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering anisotropic cardiac monolayers on microelectrode arrays for non-invasive analyses of electrophysiological properties.
    Alassaf A; Tansik G; Mayo V; Wubker L; Carbonero D; Agarwal A
    Analyst; 2019 Dec; 145(1):139-149. PubMed ID: 31746833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarcomere alignment is regulated by myocyte shape.
    Bray MA; Sheehy SP; Parker KK
    Cell Motil Cytoskeleton; 2008 Aug; 65(8):641-51. PubMed ID: 18561184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microenvironmental Modulation of Calcium Wave Propagation Velocity in Engineered Cardiac Tissues.
    Petersen AP; Lyra-Leite DM; Ariyasinghe NR; Cho N; Goodwin CM; Kim JY; McCain ML
    Cell Mol Bioeng; 2018 Oct; 11(5):337-352. PubMed ID: 31719889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture.
    Feinberg AW; Alford PW; Jin H; Ripplinger CM; Werdich AA; Sheehy SP; Grosberg A; Parker KK
    Biomaterials; 2012 Aug; 33(23):5732-41. PubMed ID: 22594976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of myocyte remodeling in vitro with engineered substrates.
    Geisse NA; Sheehy SP; Parker KK
    In Vitro Cell Dev Biol Anim; 2009; 45(7):343-50. PubMed ID: 19252956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers.
    Gopalan SM; Flaim C; Bhatia SN; Hoshijima M; Knoell R; Chien KR; Omens JH; McCulloch AD
    Biotechnol Bioeng; 2003 Mar; 81(5):578-87. PubMed ID: 12514807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercellular and extracellular mechanotransduction in cardiac myocytes.
    Kresh JY; Chopra A
    Pflugers Arch; 2011 Jul; 462(1):75-87. PubMed ID: 21437600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered heart slices for electrophysiological and contractile studies.
    Blazeski A; Kostecki GM; Tung L
    Biomaterials; 2015 Jul; 55():119-28. PubMed ID: 25934457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical Properties and Mechanobiology of Cardiac ECM.
    Nguyen-Truong M; Wang Z
    Adv Exp Med Biol; 2018; 1098():1-19. PubMed ID: 30238363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of miR-142-3p improves mitochondrial function in cardiac hypertrophy.
    Liu BL; Cheng M; Hu S; Wang S; Wang L; Tu X; Huang CX; Jiang H; Wu G
    Biomed Pharmacother; 2018 Dec; 108():1347-1356. PubMed ID: 30372837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro model to study the effects of matrix stiffening on Ca
    van Deel ED; Najafi A; Fontoura D; Valent E; Goebel M; Kardux K; Falcão-Pires I; van der Velden J
    J Physiol; 2017 Jul; 595(14):4597-4610. PubMed ID: 28485491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.