These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 28733975)
1. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Liu F; Zhou Z; Jang H; Samsonov A; Zhao G; Kijowski R Magn Reson Med; 2018 Apr; 79(4):2379-2391. PubMed ID: 28733975 [TBL] [Abstract][Full Text] [Related]
2. Deep convolutional neural network for segmentation of knee joint anatomy. Zhou Z; Zhao G; Kijowski R; Liu F Magn Reson Med; 2018 Dec; 80(6):2759-2770. PubMed ID: 29774599 [TBL] [Abstract][Full Text] [Related]
3. SUSAN: segment unannotated image structure using adversarial network. Liu F Magn Reson Med; 2019 May; 81(5):3330-3345. PubMed ID: 30536427 [TBL] [Abstract][Full Text] [Related]
4. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs. Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675 [TBL] [Abstract][Full Text] [Related]
6. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks. Gaj S; Yang M; Nakamura K; Li X Magn Reson Med; 2020 Jul; 84(1):437-449. PubMed ID: 31793071 [TBL] [Abstract][Full Text] [Related]
7. Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the Osteoarthritis Initiative. Ambellan F; Tack A; Ehlke M; Zachow S Med Image Anal; 2019 Feb; 52():109-118. PubMed ID: 30529224 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous super-resolution and contrast synthesis of routine clinical magnetic resonance images of the knee for improving automatic segmentation of joint cartilage: data from the Osteoarthritis Initiative. Neubert A; Bourgeat P; Wood J; Engstrom C; Chandra SS; Crozier S; Fripp J Med Phys; 2020 Oct; 47(10):4939-4948. PubMed ID: 32745260 [TBL] [Abstract][Full Text] [Related]
9. Fully automated multiorgan segmentation of female pelvic magnetic resonance images with coarse-to-fine convolutional neural network. Zabihollahy F; Viswanathan AN; Schmidt EJ; Morcos M; Lee J Med Phys; 2021 Nov; 48(11):7028-7042. PubMed ID: 34609756 [TBL] [Abstract][Full Text] [Related]
10. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks. Xue YP; Jang H; Byra M; Cai ZY; Wu M; Chang EY; Ma YJ; Du J Eur Radiol; 2021 Oct; 31(10):7653-7663. PubMed ID: 33783571 [TBL] [Abstract][Full Text] [Related]
11. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Zabihollahy F; White JA; Ukwatta E Med Phys; 2019 Apr; 46(4):1740-1751. PubMed ID: 30734937 [TBL] [Abstract][Full Text] [Related]
12. Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks. Krüger J; Opfer R; Gessert N; Ostwaldt AC; Manogaran P; Kitzler HH; Schlaefer A; Schippling S Neuroimage Clin; 2020; 28():102445. PubMed ID: 33038667 [TBL] [Abstract][Full Text] [Related]
13. Fully automated patellofemoral MRI segmentation using holistically nested networks: Implications for evaluating patellofemoral osteoarthritis, pain, injury, pathology, and adolescent development. Cheng R; Alexandridi NA; Smith RM; Shen A; Gandler W; McCreedy E; McAuliffe MJ; Sheehan FT Magn Reson Med; 2020 Jan; 83(1):139-153. PubMed ID: 31402520 [TBL] [Abstract][Full Text] [Related]
14. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
15. Fully Automatic initialization and segmentation of left and right ventricles for large-scale cardiac MRI using a deeply supervised network and 3D-ASM. Hu H; Pan N; Frangi AF Comput Methods Programs Biomed; 2023 Oct; 240():107679. PubMed ID: 37364366 [TBL] [Abstract][Full Text] [Related]
16. Automated glioma grading on conventional MRI images using deep convolutional neural networks. Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478 [TBL] [Abstract][Full Text] [Related]
17. Convolutional neural network for automated mass segmentation in mammography. Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952 [TBL] [Abstract][Full Text] [Related]
18. A distance map regularized CNN for cardiac cine MR image segmentation. Dangi S; Linte CA; Yaniv Z Med Phys; 2019 Dec; 46(12):5637-5651. PubMed ID: 31598971 [TBL] [Abstract][Full Text] [Related]
19. Fully Automated Hippocampus Segmentation using T2-informed Deep Convolutional Neural Networks. Sackl M; Tinauer C; Urschler M; Enzinger C; Stollberger R; Ropele S Neuroimage; 2024 Sep; 298():120767. PubMed ID: 39103064 [TBL] [Abstract][Full Text] [Related]
20. CAN3D: Fast 3D medical image segmentation via compact context aggregation. Dai W; Woo B; Liu S; Marques M; Engstrom C; Greer PB; Crozier S; Dowling JA; Chandra SS Med Image Anal; 2022 Nov; 82():102562. PubMed ID: 36049450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]