These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 28734117)
1. Hybrid piezoresistive-optical tactile sensor for simultaneous measurement of tissue stiffness and detection of tissue discontinuity in robot-assisted minimally invasive surgery. Bandari NM; Ahmadi R; Hooshiar A; Dargahi J; Packirisamy M J Biomed Opt; 2017 Jul; 22(7):77002. PubMed ID: 28734117 [TBL] [Abstract][Full Text] [Related]
2. A resonant tactile stiffness sensor for lump localization in robot-assisted minimally invasive surgery. Yun Y; Wang Y; Guo H; Wang Y; Wu H; Chen B; Ju F Proc Inst Mech Eng H; 2019 Sep; 233(9):909-920. PubMed ID: 31210594 [TBL] [Abstract][Full Text] [Related]
3. Finite-element modeling of soft tissue rolling indentation. Sangpradit K; Liu H; Dasgupta P; Althoefer K; Seneviratne LD IEEE Trans Biomed Eng; 2011 Dec; 58(12):3319-27. PubMed ID: 21257372 [TBL] [Abstract][Full Text] [Related]
4. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations. Ahmadi R; Packirisamy M; Dargahi J J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177 [TBL] [Abstract][Full Text] [Related]
5. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array. Hamed A; Masamune K; Tse ZT; Lamperth M; Dohi T Proc Inst Mech Eng H; 2012 Jul; 226(7):565-75. PubMed ID: 22913103 [TBL] [Abstract][Full Text] [Related]
6. Advances in bio-tactile sensors for minimally invasive surgery using the fibre Bragg grating force sensor technique: a survey. Abushagur AA; Arsad N; Reaz MI; Bakar AA Sensors (Basel); 2014 Apr; 14(4):6633-65. PubMed ID: 24721774 [TBL] [Abstract][Full Text] [Related]
7. Development of optical fiber Bragg grating force-reflection sensor system of medical application for safe minimally invasive robotic surgery. Song H; Kim K; Lee J Rev Sci Instrum; 2011 Jul; 82(7):074301. PubMed ID: 21806202 [TBL] [Abstract][Full Text] [Related]
8. A Piezoelectric Tactile Sensor for Tissue Stiffness Detection with Arbitrary Contact Angle. Zhang Y; Ju F; Wei X; Wang D; Wang Y Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218118 [TBL] [Abstract][Full Text] [Related]
9. Stiffness Assessment and Lump Detection in Minimally Invasive Surgery Using In-House Developed Smart Laparoscopic Forceps. Othman W; Vandyck KE; Abril C; Barajas-Gamboa JS; Pantoja JP; Kroh M; Qasaimeh MA IEEE J Transl Eng Health Med; 2022; 10():2500410. PubMed ID: 35774413 [TBL] [Abstract][Full Text] [Related]
10. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization. Talasaz A; Patel RV IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305 [TBL] [Abstract][Full Text] [Related]
11. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system. Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984 [TBL] [Abstract][Full Text] [Related]
12. A piezoresistive tactile sensor for tissue characterization during catheter-based cardiac surgery. Kalantari M; Ramezanifard M; Ahmadi R; Dargahi J; Kövecses J Int J Med Robot; 2011 Dec; 7(4):431-40. PubMed ID: 21976393 [TBL] [Abstract][Full Text] [Related]
13. Optical Fiber Array Sensor for Force Estimation and Localization in TAVI Procedure: Design, Modeling, Analysis and Validation. Bandari N; Dargahi J; Packirisamy M Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450813 [TBL] [Abstract][Full Text] [Related]
14. Palpation-Based Multi-Tumor Detection Method Considering Moving Distance for Robot-assisted Minimally Invasive Surgery. Yun Y; Ju F; Zhang Y; Zhu C; Wang Y; Guo H; Wei X; Chen B Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4899-4902. PubMed ID: 33019087 [TBL] [Abstract][Full Text] [Related]
15. An autoclavable wireless palpation instrument for minimally invasive surgery. Naidu AS; Escoto A; Fahmy O; Patel RV; Naish MD Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6489-6492. PubMed ID: 28269733 [TBL] [Abstract][Full Text] [Related]
16. A continuum body force sensor designed for flexible surgical robotics devices. Noh Y; Secco EL; Sareh S; Wurdemann H; Faragasso A; Back J; Liu H; Sklar E; Althoefer K Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3711-4. PubMed ID: 25570797 [TBL] [Abstract][Full Text] [Related]
17. A Variable-Impedance Tactile Sensor With Online Performance Tuning for Tissue Hardness Palpation in Robot-Assisted Minimally Invasive Surgery. Ju F; Yun Y; Zhang Z; Wang Y; Wang Y; Zhang L; Chen B Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2142-2145. PubMed ID: 30440827 [TBL] [Abstract][Full Text] [Related]
18. A proof-of-principle robot with potential for the development of a hand-held tactile instrument for minimally-invasive artery cross-clamping. Pahlavan P; Najarian S; Dargahi J; Moini M J Med Eng Technol; 2014 Aug; 38(6):295-301. PubMed ID: 24939852 [TBL] [Abstract][Full Text] [Related]
19. Tactile Object Recognition for Humanoid Robots Using New Designed Piezoresistive Tactile Sensor and DCNN. Pohtongkam S; Srinonchat J Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577230 [TBL] [Abstract][Full Text] [Related]
20. A High-Precision and Miniature Fiber Bragg Grating-Based Force Sensor for Tissue Palpation During Minimally Invasive Surgery. Lv C; Wang S; Shi C Ann Biomed Eng; 2020 Feb; 48(2):669-681. PubMed ID: 31686311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]