BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28734137)

  • 1. Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants.
    Noack LC; Jaillais Y
    Curr Opin Plant Biol; 2017 Dec; 40():22-33. PubMed ID: 28734137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoinositides in plants: novel functions in membrane trafficking.
    Thole JM; Nielsen E
    Curr Opin Plant Biol; 2008 Dec; 11(6):620-31. PubMed ID: 19028349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in plant endomembrane research and new microscopical techniques.
    Zeng Y; Liang Z; Liu Z; Li B; Cui Y; Gao C; Shen J; Wang X; Zhao Q; Zhuang X; Erdmann PS; Wong KB; Jiang L
    New Phytol; 2023 Oct; 240(1):41-60. PubMed ID: 37507353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How phosphoinositides shape autophagy in plant cells.
    Chung T
    Plant Sci; 2019 Apr; 281():146-158. PubMed ID: 30824047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory roles of phosphoinositides in membrane trafficking and their potential impact on cell-wall synthesis and re-modelling.
    Krishnamoorthy P; Sanchez-Rodriguez C; Heilmann I; Persson S
    Ann Bot; 2014 Oct; 114(6):1049-57. PubMed ID: 24769536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endosomal phosphoinositides and human diseases.
    Nicot AS; Laporte J
    Traffic; 2008 Aug; 9(8):1240-9. PubMed ID: 18429927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuolar trafficking and biogenesis: a maturation in the field.
    Brillada C; Rojas-Pierce M
    Curr Opin Plant Biol; 2017 Dec; 40():77-81. PubMed ID: 28865974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pairing phosphoinositides with calcium ions in endolysosomal dynamics: phosphoinositides control the direction and specificity of membrane trafficking by regulating the activity of calcium channels in the endolysosomes.
    Shen D; Wang X; Xu H
    Bioessays; 2011 Jun; 33(6):448-57. PubMed ID: 21538413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From hitchhiker to hijacker: pathogen exploitation of endosomal phosphoinositides
    Qiu S; Côté M
    Biochem Cell Biol; 2019 Feb; 97(1):1-9. PubMed ID: 29746785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant endosomal trafficking pathways.
    Reyes FC; Buono R; Otegui MS
    Curr Opin Plant Biol; 2011 Dec; 14(6):666-73. PubMed ID: 21821464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphoinositides in constitutive membrane traffic.
    Roth MG
    Physiol Rev; 2004 Jul; 84(3):699-730. PubMed ID: 15269334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changing phosphoinositides "on the fly": how trafficking vesicles avoid an identity crisis.
    Botelho RJ
    Bioessays; 2009 Oct; 31(10):1127-36. PubMed ID: 19708025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of phosphatidylinositol 3,5-bisphosphate production has pleiotropic effects on various membrane trafficking routes in Arabidopsis.
    Hirano T; Munnik T; Sato MH
    Plant Cell Physiol; 2017 Jan; 58(1):120-129. PubMed ID: 27803131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast-suppressor screening for new components in protein trafficking, organelle biogenesis and silencing pathway in Arabidopsis thaliana using DEX-inducible FREE1-RNAi plants.
    Zhao Q; Gao C; Lee P; Liu L; Li S; Hu T; Shen J; Pan S; Ye H; Chen Y; Cao W; Cui Y; Zeng P; Yu S; Gao Y; Chen L; Mo B; Liu X; Xiao S; Zhao Y; Zhong S; Chen X; Jiang L
    J Genet Genomics; 2015 Jun; 42(6):319-30. PubMed ID: 26165498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guilt by Association: A Phenotype-Based View of the Plant Phosphoinositide Network.
    Gerth K; Lin F; Menzel W; Krishnamoorthy P; Stenzel I; Heilmann M; Heilmann I
    Annu Rev Plant Biol; 2017 Apr; 68():349-374. PubMed ID: 28125287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high dose KRP203 induces cytoplasmic vacuoles associated with altered phosphoinositide segregation and endosome expansion.
    Kofuji S; Wolfe K; Sumita K; Kageyama S; Yoshino H; Hirota Y; Ogawa-Iio A; Kanoh H; Sasaki M; Kofuji K; Davis MI; Pragani R; Shen M; Boxer MB; Nakatsu F; Nigorikawa K; Sasaki T; Takeuchi K; Senda T; Kim SM; Edinger AL; Simeonov A; Sasaki AT
    Biochem Biophys Res Commun; 2024 Jul; 718():149981. PubMed ID: 38735134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Phosphoinositides: lipidic essential actors in the intracellular traffic].
    Bertazzi DL; De Craene JO; Bär S; Sanjuan-Vazquez M; Raess MA; Friant S
    Biol Aujourdhui; 2015; 209(1):97-109. PubMed ID: 26115715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoinositides and cytokinesis: the "PIP" of the iceberg.
    Echard A
    Cytoskeleton (Hoboken); 2012 Nov; 69(11):893-912. PubMed ID: 23012232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphoinositides and engulfment.
    Swanson JA
    Cell Microbiol; 2014 Oct; 16(10):1473-83. PubMed ID: 25073505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoinositides: multipurpose cellular lipids with emerging roles in cell death.
    Phan TK; Williams SA; Bindra GK; Lay FT; Poon IKH; Hulett MD
    Cell Death Differ; 2019 May; 26(5):781-793. PubMed ID: 30742090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.