These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 28734313)
1. Singlet fission in chiral carbon nanotubes: Density functional theory based computation. Kryjevski A; Mihaylov D; Gifford B; Kilin D J Chem Phys; 2017 Jul; 147(3):034106. PubMed ID: 28734313 [TBL] [Abstract][Full Text] [Related]
2. Theoretical predictions on efficiency of bi-exciton formation and dissociation in chiral carbon nanotubes. Kryjevski A; Gifford B; Kilina S; Kilin D J Chem Phys; 2016 Oct; 145(15):154112. PubMed ID: 27782482 [TBL] [Abstract][Full Text] [Related]
3. Multiple exciton generation in chiral carbon nanotubes: Density functional theory based computation. Kryjevski A; Mihaylov D; Kilina S; Kilin D J Chem Phys; 2017 Oct; 147(15):154106. PubMed ID: 29055322 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of Charge Transfer and Multiple Exciton Generation in the Doped Silicon Quantum Dot-Carbon Nanotube System: Density Functional Theory-Based Computation. Kryjevski A; Mihaylov D; Kilin D J Phys Chem Lett; 2018 Oct; 9(19):5759-5764. PubMed ID: 30199263 [TBL] [Abstract][Full Text] [Related]
5. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes. Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262 [TBL] [Abstract][Full Text] [Related]
6. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]
7. Microscopic theory of singlet exciton fission. I. General formulation. Berkelbach TC; Hybertsen MS; Reichman DR J Chem Phys; 2013 Mar; 138(11):114102. PubMed ID: 23534622 [TBL] [Abstract][Full Text] [Related]
8. Collecting up to 115% of Singlet-Fission Products by Single-Walled Carbon Nanotubes. Menon A; Papadopoulos I; Harreiß C; Mora-Fuentes JP; Cortizo-Lacalle D; Mateo-Alonso A; Spiecker E; Guldi DM ACS Nano; 2020 Jul; 14(7):8875-8886. PubMed ID: 32543172 [TBL] [Abstract][Full Text] [Related]
9. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Wilson MW; Rao A; Ehrler B; Friend RH Acc Chem Res; 2013 Jun; 46(6):1330-8. PubMed ID: 23656886 [TBL] [Abstract][Full Text] [Related]
11. Identification of a triplet pair intermediate in singlet exciton fission in solution. Stern HL; Musser AJ; Gelinas S; Parkinson P; Herz LM; Bruzek MJ; Anthony J; Friend RH; Walker BJ Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7656-61. PubMed ID: 26060309 [TBL] [Abstract][Full Text] [Related]
12. Singlet Fission: Progress and Prospects in Solar Cells. Xia J; Sanders SN; Cheng W; Low JZ; Liu J; Campos LM; Sun T Adv Mater; 2017 May; 29(20):. PubMed ID: 27973702 [TBL] [Abstract][Full Text] [Related]
13. Confirmation of K-momentum dark exciton vibronic sidebands using 13C-labeled, highly enriched (6,5) single-walled carbon nanotubes. Blackburn JL; Holt JM; Irurzun VM; Resasco DE; Rumbles G Nano Lett; 2012 Mar; 12(3):1398-403. PubMed ID: 22313425 [TBL] [Abstract][Full Text] [Related]
14. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission. Burdett JJ; Gosztola D; Bardeen CJ J Chem Phys; 2011 Dec; 135(21):214508. PubMed ID: 22149803 [TBL] [Abstract][Full Text] [Related]
15. Correlated Pair States Formed by Singlet Fission and Exciton-Exciton Annihilation. Scholes GD J Phys Chem A; 2015 Dec; 119(51):12699-705. PubMed ID: 26595530 [TBL] [Abstract][Full Text] [Related]
16. The nature of singlet exciton fission in carotenoid aggregates. Musser AJ; Maiuri M; Brida D; Cerullo G; Friend RH; Clark J J Am Chem Soc; 2015 Apr; 137(15):5130-9. PubMed ID: 25825939 [TBL] [Abstract][Full Text] [Related]
17. Origins of Singlet Fission in Solid Pentacene from an ab initio Green's Function Approach. Refaely-Abramson S; da Jornada FH; Louie SG; Neaton JB Phys Rev Lett; 2017 Dec; 119(26):267401. PubMed ID: 29328724 [TBL] [Abstract][Full Text] [Related]
18. Intermolecular Vibrational Modes Speed Up Singlet Fission in Perylenediimide Crystals. Renaud N; Grozema FC J Phys Chem Lett; 2015 Feb; 6(3):360-5. PubMed ID: 26261948 [TBL] [Abstract][Full Text] [Related]
20. Monitoring of the energy levels by heteroatom substitution to hexacene and controlling over singlet fission and photo-oxidative resistance. Sardar S J Mol Graph Model; 2017 Jun; 74():24-37. PubMed ID: 28349877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]