These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 28734346)
1. HAP nanoparticle and substrate surface electrical potential towards bone cells adhesion: Recent results review. Bystrov V; Bystrova A; Dekhtyar Y Adv Colloid Interface Sci; 2017 Nov; 249():213-219. PubMed ID: 28734346 [TBL] [Abstract][Full Text] [Related]
2. Hydroxyapatite-coated double network hydrogel directly bondable to the bone: Biological and biomechanical evaluations of the bonding property in an osteochondral defect. Wada S; Kitamura N; Nonoyama T; Kiyama R; Kurokawa T; Gong JP; Yasuda K Acta Biomater; 2016 Oct; 44():125-34. PubMed ID: 27523030 [TBL] [Abstract][Full Text] [Related]
3. The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells. Chen L; Mccrate JM; Lee JC; Li H Nanotechnology; 2011 Mar; 22(10):105708. PubMed ID: 21289408 [TBL] [Abstract][Full Text] [Related]
4. Nanoscale hydroxyapatite particles for bone tissue engineering. Zhou H; Lee J Acta Biomater; 2011 Jul; 7(7):2769-81. PubMed ID: 21440094 [TBL] [Abstract][Full Text] [Related]
5. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. Han Y; Wang X; Dai H; Li S ACS Appl Mater Interfaces; 2012 Sep; 4(9):4616-22. PubMed ID: 22860897 [TBL] [Abstract][Full Text] [Related]
6. Effect of hydroxyapatite surface morphology on cell adhesion. Iwamoto T; Hieda Y; Kogai Y Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1263-7. PubMed ID: 27612825 [TBL] [Abstract][Full Text] [Related]
7. Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration. Nasiri N; Ceramidas A; Mukherjee S; Panneerselvan A; Nisbet DR; Tricoli A Sci Rep; 2016 Apr; 6():24305. PubMed ID: 27076035 [TBL] [Abstract][Full Text] [Related]
8. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid-dopamine conjugate. Kim HH; Park JB; Kang MJ; Park YH Int J Biol Macromol; 2014 Sep; 70():516-22. PubMed ID: 24999272 [TBL] [Abstract][Full Text] [Related]
9. Functional hydroxyapatite bioceramics with excellent osteoconductivity and stern-interface induced antibacterial ability. Shi C; Gao J; Wang M; Shao Y; Wang L; Wang D; Zhu Y Biomater Sci; 2016 Apr; 4(4):699-710. PubMed ID: 26883734 [TBL] [Abstract][Full Text] [Related]
10. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878 [TBL] [Abstract][Full Text] [Related]
11. Hydroxyapatite nanoparticles in poly-D,L-lactic acid coatings on porous titanium implants conducts bone formation. Jensen T; Jakobsen T; Baas J; Nygaard JV; Dolatshahi-Pirouz A; Hovgaard MB; Foss M; Bünger C; Besenbacher F; Søballe K J Biomed Mater Res A; 2010 Dec; 95(3):665-72. PubMed ID: 20725972 [TBL] [Abstract][Full Text] [Related]
12. Computational and experimental studies of size and shape related physical properties of hydroxyapatite nanoparticles. Bystrov VS; Paramonova E; Dekhtyar Y; Katashev A; Karlov A; Polyaka N; Bystrova AV; Patmalnieks A; Kholkin AL J Phys Condens Matter; 2011 Feb; 23(6):065302. PubMed ID: 21406923 [TBL] [Abstract][Full Text] [Related]
14. Experiment, thermal simulation, and characterizations on transmission laser coating of hydroxyapatite on metal implant. Cheng GJ; Ye C J Biomed Mater Res A; 2010 Jan; 92(1):70-9. PubMed ID: 19165793 [TBL] [Abstract][Full Text] [Related]
15. A novel approach for enhanced nanoparticle-sized bone substitute adhesion to chemically treated peri-implantitis-affected implant surfaces: an in vitro proof-of-principle study. Gamal AY; Abdel-Ghaffar KA; Iacono VJ J Periodontol; 2013 Feb; 84(2):239-47. PubMed ID: 22554294 [TBL] [Abstract][Full Text] [Related]
16. Dopamine-assisted immobilization of hydroxyapatite nanoparticles and RGD peptides to improve the osteoconductivity of titanium. Chien CY; Liu TY; Kuo WH; Wang MJ; Tsai WB J Biomed Mater Res A; 2013 Mar; 101(3):740-7. PubMed ID: 22941953 [TBL] [Abstract][Full Text] [Related]
17. Surface functionalization of hydroxyapatite nanoparticles for biomedical applications. Kataoka T; Liu Z; Yamada I; Galindo TGP; Tagaya M J Mater Chem B; 2024 Jul; 12(28):6805-6826. PubMed ID: 38919049 [TBL] [Abstract][Full Text] [Related]
18. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Zhang P; Hong Z; Yu T; Chen X; Jing X Biomaterials; 2009 Jan; 30(1):58-70. PubMed ID: 18838160 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of hydroxyapatite for biomedical applications. Szcześ A; Hołysz L; Chibowski E Adv Colloid Interface Sci; 2017 Nov; 249():321-330. PubMed ID: 28457501 [TBL] [Abstract][Full Text] [Related]
20. Recent advances in research applications of nanophase hydroxyapatite. Fox K; Tran PA; Tran N Chemphyschem; 2012 Jul; 13(10):2495-506. PubMed ID: 22467406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]