BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

781 related articles for article (PubMed ID: 28734362)

  • 1. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS.
    Ratiu IA; Bocos-Bintintan V; Patrut A; Moll VH; Turner M; Thomas CLP
    Anal Chim Acta; 2017 Aug; 982():209-217. PubMed ID: 28734362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensors' array of aspiration ion mobility spectrometer as a tool for bacteria discrimination.
    Bocos-Bintintan V; Thomas CLP; Ratiu IA
    Talanta; 2020 Jan; 206():120233. PubMed ID: 31514847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GC-IMS headspace analyses allow early recognition of bacterial growth and rapid pathogen differentiation in standard blood cultures.
    Drees C; Vautz W; Liedtke S; Rosin C; Althoff K; Lippmann M; Zimmermann S; Legler TJ; Yildiz D; Perl T; Kunze-Szikszay N
    Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9091-9101. PubMed ID: 31664484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry.
    Boots AW; Smolinska A; van Berkel JJ; Fijten RR; Stobberingh EE; Boumans ML; Moonen EJ; Wouters EF; Dallinga JW; Van Schooten FJ
    J Breath Res; 2014 Jun; 8(2):027106. PubMed ID: 24737039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS.
    Guo Y; Chen D; Dong Y; Ju H; Wu C; Lin S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Nov; 1099():46-55. PubMed ID: 30241073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling.
    Gerhardt N; Birkenmeier M; Sanders D; Rohn S; Weller P
    Anal Bioanal Chem; 2017 Jun; 409(16):3933-3942. PubMed ID: 28417171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GC-MS application in determination of volatile profiles emitted by infected and uninfected human tissue.
    Ratiu IA; Ligor T; Bocos-Bintintan V; Szeliga J; Machała K; Jackowski M; Buszewski B
    J Breath Res; 2019 Mar; 13(2):026003. PubMed ID: 30530935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry.
    Rodríguez-Maecker R; Vyhmeister E; Meisen S; Rosales Martinez A; Kuklya A; Telgheder U
    Anal Bioanal Chem; 2017 Nov; 409(28):6595-6603. PubMed ID: 28932891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).
    Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR
    Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer.
    Li M; Yang R; Zhang H; Wang S; Chen D; Lin S
    Food Chem; 2019 Aug; 290():32-39. PubMed ID: 31000053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic volatiles analysis of Dongbei Suancai across different fermentation stages based on HS-GC-IMS with PCA.
    Han Y; Wang C; Zhang X; Li X; Gao Y
    J Food Sci; 2022 Feb; 87(2):612-622. PubMed ID: 35067929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Volatile Component Changes in Jujube Fruits during Cold Storage by Using Headspace-Gas Chromatography-Ion Mobility Spectrometry.
    Yang L; Liu J; Wang X; Wang R; Ren F; Zhang Q; Shan Y; Ding S
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31671527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton-transfer reaction mass spectrometry (PTRMS) in combination with thermal desorption (TD) for sensitive off-line analysis of volatiles.
    Crespo E; Devasena S; Sikkens C; Centeno R; Cristescu SM; Harren FJ
    Rapid Commun Mass Spectrom; 2012 Apr; 26(8):990-6. PubMed ID: 22396037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid authentication of Chaenomeles species by visual volatile components fingerprints based on headspace gas chromatography-ion mobility spectrometry combined with chemometric analysis.
    Tian S; Guo H; Zhang M; Yan H; Wang X; Zhao H
    Phytochem Anal; 2022 Dec; 33(8):1198-1204. PubMed ID: 36028334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using ion mobility spectrometry-metabolic profiling by volatile organic compounds.
    Perl T; Jünger M; Vautz W; Nolte J; Kuhns M; Borg-von Zepelin M; Quintel M
    Mycoses; 2011 Nov; 54(6):e828-37. PubMed ID: 21668516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fingerprints and changes analysis of volatile compounds in fresh-cut yam during yellowing process by using HS-GC-IMS.
    Guo S; Zhao X; Ma Y; Wang Y; Wang D
    Food Chem; 2022 Feb; 369():130939. PubMed ID: 34469843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry.
    Wang X; Yang S; He J; Chen L; Zhang J; Jin Y; Zhou J; Zhang Y
    Food Res Int; 2019 May; 119():960-967. PubMed ID: 30884736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the Volatile Components of Candied Kumquats in Different Processing Methodologies with Headspace-Gas Chromatography-Ion Mobility Spectrometry.
    Hu X; Wang R; Guo J; Ge K; Li G; Fu F; Ding S; Shan Y
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31443455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiating organically and conventionally grown oregano using ultraperformance liquid chromatography mass spectrometry (UPLC-MS), headspace gas chromatography with flame ionization detection (headspace-GC-FID), and flow injection mass spectrum (FIMS) fingerprints combined with multivariate data analysis.
    Gao B; Qin F; Ding T; Chen Y; Lu W; Yu LL
    J Agric Food Chem; 2014 Aug; 62(32):8075-84. PubMed ID: 25050447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel coupling technique based on thermal desorption gas chromatography with mass spectrometry and ion mobility spectrometry for breath analysis.
    Schanzmann H; Ruzsanyi V; Ahmad-Nejad P; Telgheder U; Sielemann S
    J Breath Res; 2023 Dec; 18(1):. PubMed ID: 38100823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.