BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 28734478)

  • 1. pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1.
    Wolf J; Aisenbrey C; Harmouche N; Raya J; Bertani P; Voievoda N; Süss R; Bechinger B
    Biophys J; 2017 Sep; 113(6):1290-1300. PubMed ID: 28734478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the interaction of saposin C with POPS and POPC phospholipids: a solid-state NMR spectroscopic study.
    Abu-Baker S; Qi X; Lorigan GA
    Biophys J; 2007 Nov; 93(10):3480-90. PubMed ID: 17704143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
    Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK
    Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.
    Roux M; Beswick V; Coïc YM; Huynh-Dinh T; Sanson A; Neumann JM
    Biophys J; 2000 Nov; 79(5):2624-31. PubMed ID: 11053135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interactions of histidine-containing amphipathic helical peptide antibiotics with lipid bilayers. The effects of charges and pH.
    Vogt TC; Bechinger B
    J Biol Chem; 1999 Oct; 274(41):29115-21. PubMed ID: 10506166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detergent-like properties of magainin antibiotic peptides: a 31P solid-state NMR spectroscopy study.
    Bechinger B
    Biochim Biophys Acta; 2005 Jun; 1712(1):101-8. PubMed ID: 15869740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential scanning calorimetry and (2)H nuclear magnetic resonance and Fourier transform infrared spectroscopy studies of the effects of transmembrane alpha-helical peptides on the organization of phosphatidylcholine bilayers.
    Paré C; Lafleur M; Liu F; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2001 Mar; 1511(1):60-73. PubMed ID: 11248205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating structural changes in the lipid bilayer upon insertion of the transmembrane domain of the membrane-bound protein phospholamban utilizing 31P and 2H solid-state NMR spectroscopy.
    Dave PC; Tiburu EK; Damodaran K; Lorigan GA
    Biophys J; 2004 Mar; 86(3):1564-73. PubMed ID: 14990483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and alignment of the membrane-associated peptaibols ampullosporin A and alamethicin by oriented 15N and 31P solid-state NMR spectroscopy.
    Salnikov ES; Friedrich H; Li X; Bertani P; Reissmann S; Hertweck C; O'Neil JD; Raap J; Bechinger B
    Biophys J; 2009 Jan; 96(1):86-100. PubMed ID: 18835909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spectroscopic study of the membrane interaction of tuberoinfundibular peptide of 39 residues (TIP39).
    Mason AJ; Lopez JJ; Beyermann M; Glaubitz C
    Biochim Biophys Acta; 2005 Aug; 1714(1):1-10. PubMed ID: 16023614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer.
    Wenk MR; Alt T; Seelig A; Seelig J
    Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cationic amphiphiles and the solubilization of cholesterol crystallites in membrane bilayers.
    Benatti CR; Lamy MT; Epand RM
    Biochim Biophys Acta; 2008 Apr; 1778(4):844-53. PubMed ID: 18201547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state NMR investigation of the selective perturbation of lipid bilayers by the cyclic antimicrobial peptide RTD-1.
    Buffy JJ; McCormick MJ; Wi S; Waring A; Lehrer RI; Hong M
    Biochemistry; 2004 Aug; 43(30):9800-12. PubMed ID: 15274634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.
    Ouellet M; Doucet JD; Voyer N; Auger M
    Biochemistry; 2007 Jun; 46(22):6597-606. PubMed ID: 17487978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of acyl chain structure and bilayer phase state on binding and penetration of a supported lipid bilayer by HPA3.
    Hirst DJ; Lee TH; Swann MJ; Unabia S; Park Y; Hahm KS; Aguilar MI
    Eur Biophys J; 2011 Apr; 40(4):503-14. PubMed ID: 21222117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbation of the hydrophobic core of lipid bilayers by the human antimicrobial peptide LL-37.
    Henzler-Wildman KA; Martinez GV; Brown MF; Ramamoorthy A
    Biochemistry; 2004 Jul; 43(26):8459-69. PubMed ID: 15222757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium binding by phosphatidylserine headgroups. Deuterium NMR study.
    Roux M; Bloom M
    Biophys J; 1991 Jul; 60(1):38-44. PubMed ID: 1883944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.