BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28734956)

  • 1. Fast carotid artery MR angiography with compressed sensing based three-dimensional time-of-flight sequence.
    Li B; Li H; Dong L; Huang G
    Magn Reson Imaging; 2017 Nov; 43():129-135. PubMed ID: 28734956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressed sensing based simultaneous black- and gray-blood carotid vessel wall MR imaging.
    Li B; Li H; Kong H; Dong L; Zhang J; Fang J
    Magn Reson Imaging; 2017 May; 38():214-223. PubMed ID: 28109887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turbo fast three-dimensional carotid artery black-blood MRI by combining three-dimensional MERGE sequence with compressed sensing.
    Li B; Dong L; Chen B; Ji S; Cai W; Wang Y; Zhang J; Zhang Z; Wang X; Fang J
    Magn Reson Med; 2013 Nov; 70(5):1347-52. PubMed ID: 23280949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relaxation enhanced compressed sensing three-dimensional black-blood vessel wall MR imaging: Preliminary studies.
    Li B; Li H; Li J; Zhang Y; Wang X; Zhang J; Dong L; Fang J
    Magn Reson Imaging; 2015 Sep; 33(7):932-8. PubMed ID: 25863136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution time-of-flight MR-angiography at 7 T exploiting VERSE saturation, compressed sensing and segmentation.
    Meixner CR; Liebig P; Speier P; Forman C; Hensel B; Schmidt M; Saake M; Uder M; Doerfler A; Heidemann RM; Schmitter S; Nagel AM
    Magn Reson Imaging; 2019 Nov; 63():193-204. PubMed ID: 31434005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospective evaluation of extracranial carotid stenosis: MR angiography with maximum-intensity projections and multiplanar reformation compared with conventional angiography.
    De Marco JK; Nesbit GM; Wesbey GE; Richardson D
    AJR Am J Roentgenol; 1994 Nov; 163(5):1205-12. PubMed ID: 7976902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly accelerated intracranial time-of-flight magnetic resonance angiography using wave-encoding.
    Ji Y; Wu W; de Buck MHS; Okell T; Jezzard P
    Magn Reson Med; 2023 Aug; 90(2):432-443. PubMed ID: 37010811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiral 3D time-of-flight MR angiography for rapid non-contrast carotid artery imaging: Clinical feasibility and protocol optimization.
    Sartoretti E; Sartoretti-Schefer S; van Smoorenburg L; Binkert CA; Gutzeit A; Wyss M; Sartoretti T
    Phys Med; 2022 Jan; 93():20-28. PubMed ID: 34902771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T: An In Vitro and Clinical Study in Healthy Volunteers.
    Sartoretti T; van Smoorenburg L; Sartoretti E; Schwenk Á; Binkert CA; Kulcsár Z; Becker AS; Graf N; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 May; 55(5):293-303. PubMed ID: 31895223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved carotid lumen delineation on non-contrast MR angiography using SNAP (Simultaneous Non-Contrast Angiography and Intraplaque Hemorrhage) imaging.
    Liu H; Sun J; Hippe DS; Wu W; Chu B; Balu N; Hatsukami T; Yuan C
    Magn Reson Imaging; 2019 Oct; 62():87-93. PubMed ID: 31247251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly accelerated 4D flow cardiovascular magnetic resonance using a pseudo-spiral Cartesian acquisition and compressed sensing reconstruction for carotid flow and wall shear stress.
    Peper ES; Gottwald LM; Zhang Q; Coolen BF; van Ooij P; Nederveen AJ; Strijkers GJ
    J Cardiovasc Magn Reson; 2020 Jan; 22(1):7. PubMed ID: 31959203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional black-blood T
    Yuan J; Usman A; Reid SA; King KF; Patterson AJ; Gillard JH; Graves MJ
    Magn Reson Imaging; 2017 Apr; 37():62-69. PubMed ID: 27888153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotid blood flow measurement accelerated by compressed sensing: validation in healthy volunteers.
    Tao Y; Rilling G; Davies M; Marshall I
    Magn Reson Imaging; 2013 Nov; 31(9):1485-91. PubMed ID: 23830111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional black-blood multi-contrast carotid imaging using compressed sensing: a repeatability study.
    Yuan J; Usman A; Reid SA; King KF; Patterson AJ; Gillard JH; Graves MJ
    MAGMA; 2018 Feb; 31(1):183-190. PubMed ID: 28653214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Assessment of cross-sectional area and diameter of carotid artery using time-of-flight MR angiography and CT angiography].
    Yasuda E; Miyati T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2011; 67(4):367-73. PubMed ID: 21532247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High spatial and temporal resolution dynamic contrast-enhanced magnetic resonance angiography using compressed sensing with magnitude image subtraction.
    Rapacchi S; Han F; Natsuaki Y; Kroeker R; Plotnik A; Lehrman E; Sayre J; Laub G; Finn JP; Hu P
    Magn Reson Med; 2014 May; 71(5):1771-83. PubMed ID: 23801456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved temporal resolution and acceleration on 4D-MR angiography based on superselective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) using an interpolation algorithm on the temporal axis and compressed sensing-sensitivity encoding (CS-SENSE).
    Murazaki H; Wada T; Togao O; Obara M; Helle M; Kobayashi K; Ishigami K; Kato T
    Magn Reson Imaging; 2024 Jun; 109():1-9. PubMed ID: 38417470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracranial atherosclerotic carotid artery disease: evaluation of non-breath-hold three-dimensional gadolinium-enhanced MR angiography.
    Slosman F; Stolpen AH; Lexa FJ; Schnall MD; Langlotz CP; Carpenter JP; Goldberg HI
    AJR Am J Roentgenol; 1998 Feb; 170(2):489-95. PubMed ID: 9456971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic resonance angiography with compressed sensing: An evaluation of moyamoya disease.
    Yamamoto T; Okada T; Fushimi Y; Yamamoto A; Fujimoto K; Okuchi S; Fukutomi H; Takahashi JC; Funaki T; Miyamoto S; Stalder AF; Natsuaki Y; Speier P; Togashi K
    PLoS One; 2018; 13(1):e0189493. PubMed ID: 29351284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.