BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 28735005)

  • 1. Immobilization of antimicrobial peptides onto cellulose nanopaper.
    González I; Oliver-Ortega H; Tarrés Q; Delgado-Aguilar M; Mutjé P; Andreu D
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):741-748. PubMed ID: 28735005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.
    Lay M; Méndez JA; Delgado-Aguilar M; Bun KN; Vilaseca F
    Carbohydr Polym; 2016 Nov; 152():361-369. PubMed ID: 27516283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide.
    Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q
    Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Bleached and Unbleached Nanofibers from Pistachio Shells for Nanopaper Making.
    Robles E; Izaguirre N; Martin A; Moschou D; Labidi J
    Molecules; 2021 Mar; 26(5):. PubMed ID: 33806557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct conversion of raw wood to TEMPO-oxidized cellulose nanofibers.
    Kaffashsaie E; Yousefi H; Nishino T; Matsumoto T; Mashkour M; Madhoushi M; Kawaguchi H
    Carbohydr Polym; 2021 Jun; 262():117938. PubMed ID: 33838815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Holocellulose Nanofibers of High Molar Mass and Small Diameter for High-Strength Nanopaper.
    Galland S; Berthold F; Prakobna K; Berglund LA
    Biomacromolecules; 2015 Aug; 16(8):2427-35. PubMed ID: 26151837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose Nanofibers Prepared via Pretreatment Based on Oxone
    Ruan CQ; Gustafsson S; Strømme M; Mihranyan A; Lindh J
    Molecules; 2017 Dec; 22(12):. PubMed ID: 29292731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofibrillated cellulose (CNF) from eucalyptus sawdust as a dry strength agent of unrefined eucalyptus handsheets.
    Vallejos ME; Felissia FE; Area MC; Ehman NV; Tarrés Q; Mutjé P
    Carbohydr Polym; 2016 Mar; 139():99-105. PubMed ID: 26794952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Ishii D; Saito T; Isogai A
    Biomacromolecules; 2011 Mar; 12(3):548-50. PubMed ID: 21261299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose Nanofibers Prepared Using the TEMPO/Laccase/O
    Jiang J; Ye W; Liu L; Wang Z; Fan Y; Saito T; Isogai A
    Biomacromolecules; 2017 Jan; 18(1):288-294. PubMed ID: 27995786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of TEMPO oxidation on the properties of ethylene glycol methyl ether acrylate grafted cellulose sponges.
    Chiulan I; Panaitescu DM; Radu ER; Vizireanu S; Sătulu V; Biţă B; Gabor RA; Nicolae CA; Raduly M; Rădiţoiu V
    Carbohydr Polym; 2021 Nov; 272():118458. PubMed ID: 34420718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production.
    Balea A; Sanchez-Salvador JL; Monte MC; Merayo N; Negro C; Blanco A
    Molecules; 2019 May; 24(9):. PubMed ID: 31075959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing the Amount of Catalyst in TEMPO-Oxidized Cellulose Nanofibers: Effect on Properties and Cost.
    Serra A; González I; Oliver-Ortega H; Tarrès Q; Delgado-Aguilar M; Mutjé P
    Polymers (Basel); 2017 Oct; 9(11):. PubMed ID: 30965860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Modification of Cellulose Nanofibers for the Production of Highly Thermal Resistant and Optically Transparent Nanopaper for Paper Devices.
    Yagyu H; Saito T; Isogai A; Koga H; Nogi M
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):22012-7. PubMed ID: 26402324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong and tough cellulose nanopaper with high specific surface area and porosity.
    Sehaqui H; Zhou Q; Ikkala O; Berglund LA
    Biomacromolecules; 2011 Oct; 12(10):3638-44. PubMed ID: 21888417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect.
    Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN
    Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media.
    Liu P; Oksman K; Mathew AP
    J Colloid Interface Sci; 2016 Feb; 464():175-82. PubMed ID: 26619127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions.
    Sulaiman S; Mokhtar MN; Naim MN; Baharuddin AS; Sulaiman A
    Appl Biochem Biotechnol; 2015 Feb; 175(4):1817-42. PubMed ID: 25427594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose.
    Saito T; Kimura S; Nishiyama Y; Isogai A
    Biomacromolecules; 2007 Aug; 8(8):2485-91. PubMed ID: 17630692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.