These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 28735028)

  • 21. Self-assembling organo-peptide bolaphiles with KLK tripeptide head groups display selective antibacterial activity.
    Naidoo VB; Rautenbach M
    J Pept Sci; 2013 Dec; 19(12):784-91. PubMed ID: 24243600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-assembled arginine-rich peptides as effective antimicrobial agents.
    Mi G; Shi D; Herchek W; Webster TJ
    J Biomed Mater Res A; 2017 Apr; 105(4):1046-1054. PubMed ID: 27977886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista.
    Wang K; Yan J; Dang W; Liu X; Chen R; Zhang J; Zhang B; Zhang W; Kai M; Yan W; Yang Z; Xie J; Wang R
    Peptides; 2013 Jan; 39():80-8. PubMed ID: 23159560
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular design and genetic optimization of antimicrobial peptides containing unnatural amino acids against antibiotic-resistant bacterial infections.
    He Y; He X
    Biopolymers; 2016 Sep; 106(5):746-56. PubMed ID: 27258330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An intimate link between antimicrobial peptide sequence diversity and binding to essential components of bacterial membranes.
    Schmitt P; Rosa RD; Destoumieux-Garzón D
    Biochim Biophys Acta; 2016 May; 1858(5):958-70. PubMed ID: 26498397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp.
    Chou HT; Kuo TY; Chiang JC; Pei MJ; Yang WT; Yu HC; Lin SB; Chen WJ
    Int J Antimicrob Agents; 2008 Aug; 32(2):130-8. PubMed ID: 18586467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antimicrobial Peptides: Mechanisms of Action and Resistance.
    Bechinger B; Gorr SU
    J Dent Res; 2017 Mar; 96(3):254-260. PubMed ID: 27872334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AApeptides as a new class of antimicrobial agents.
    Niu Y; Wu H; Li Y; Hu Y; Padhee S; Li Q; Cao C; Cai J
    Org Biomol Chem; 2013 Jul; 11(26):4283-90. PubMed ID: 23722277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iterative antimicrobial candidate selection from informed d-/l-Peptide dimer libraries.
    Lichtenecker RJ; Ellinger B; Han HM; Jadhav KB; Baumann S; Makarewicz O; Grabenbauer M; Arndt HD
    Chembiochem; 2013 Dec; 14(18):2492-9. PubMed ID: 24151156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slow-Release and Nontoxic Pickering Emulsion Platform for Antimicrobial Peptide.
    Cai L; Cao M; Regenstein J
    J Agric Food Chem; 2020 Jul; 68(28):7453-7466. PubMed ID: 32559384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity.
    Kim H; Jang JH; Kim SC; Cho JH
    J Antimicrob Chemother; 2014 Jan; 69(1):121-32. PubMed ID: 23946320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybridization with Insect Cecropin A (1-8) Improve the Stability and Selectivity of Naturally Occurring Peptides.
    Yang Y; Wu D; Wang C; Shan A; Bi C; Li Y; Gan W
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32098142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of Thanatin in HEK293 Cells and Investigation of its Antibacterial Effects on Some Human Pathogens.
    Tanhaeian A; Azghandi M; Mousavi Z; Javadmanesh A
    Protein Pept Lett; 2020; 27(1):41-47. PubMed ID: 31438823
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-activity relationship of human liver-expressed antimicrobial peptide 2.
    Hocquellet A; Odaert B; Cabanne C; Noubhani A; Dieryck W; Joucla G; Le Senechal C; Milenkov M; Chaignepain S; Schmitter JM; Claverol S; Santarelli X; Dufourc EJ; Bonneu M; Garbay B; Costaglioli P
    Peptides; 2010 Jan; 31(1):58-66. PubMed ID: 19852990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria.
    Tajbakhsh M; Karimi A; Fallah F; Akhavan MM
    Cell Mol Biol (Noisy-le-grand); 2017 Oct; 63(10):20-32. PubMed ID: 29096754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry.
    Wang S; Zeng X; Yang Q; Qiao S
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27153059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Next generation of antimicrobial peptides as molecular targeted medicines.
    Aoki W; Kuroda K; Ueda M
    J Biosci Bioeng; 2012 Oct; 114(4):365-70. PubMed ID: 22658802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and Application of Antimicrobial Peptide Conjugates.
    Reinhardt A; Neundorf I
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological and structural effects of the conjugation of an antimicrobial decapeptide with saturated, unsaturated, methoxylated and branched fatty acids.
    Húmpola MV; Rey MC; Carballeira NM; Simonetta AC; Tonarelli GG
    J Pept Sci; 2017 Jan; 23(1):45-55. PubMed ID: 28025839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimicrobial activity and membrane-active mechanism of tryptophan zipper-like β-hairpin antimicrobial peptides.
    Xu L; Chou S; Wang J; Shao C; Li W; Zhu X; Shan A
    Amino Acids; 2015 Nov; 47(11):2385-97. PubMed ID: 26088720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.