BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 28735100)

  • 1. Attention modulates specific motor cortical circuits recruited by transcranial magnetic stimulation.
    Mirdamadi JL; Suzuki LY; Meehan SK
    Neuroscience; 2017 Sep; 359():151-158. PubMed ID: 28735100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verbal working memory modulates afferent circuits in motor cortex.
    Suzuki LY; Meehan SK
    Eur J Neurosci; 2018 Nov; 48(10):3117-3125. PubMed ID: 30218611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcranial magnetic stimulation in different current directions activates separate cortical circuits.
    Ni Z; Charab S; Gunraj C; Nelson AJ; Udupa K; Yeh IJ; Chen R
    J Neurophysiol; 2011 Feb; 105(2):749-56. PubMed ID: 21148098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-latency afferent inhibition determined by the sensory afferent volley.
    Bailey AZ; Asmussen MJ; Nelson AJ
    J Neurophysiol; 2016 Aug; 116(2):637-44. PubMed ID: 27226451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attention focus modulates afferent input to motor cortex during skilled action.
    Suzuki LY; Meehan SK
    Hum Mov Sci; 2020 Dec; 74():102716. PubMed ID: 33202315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the Direction and Magnitude of Hebbian Plasticity in Human Motor Cortex by Stimulus Intensity and Concurrent Inhibition.
    Cash RFH; Jegatheeswaran G; Ni Z; Chen R
    Brain Stimul; 2017; 10(1):83-90. PubMed ID: 27615792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulatory effects of movement sequence preparation and covert spatial attention on early somatosensory input to non-primary motor areas.
    Brown MJ; Staines WR
    Exp Brain Res; 2015 Feb; 233(2):503-17. PubMed ID: 25359001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity.
    Lei Y; Perez MA
    J Physiol; 2017 Sep; 595(18):6203-6217. PubMed ID: 28513860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between short latency afferent inhibition and long interval intracortical inhibition.
    Udupa K; Ni Z; Gunraj C; Chen R
    Exp Brain Res; 2009 Nov; 199(2):177-83. PubMed ID: 19730839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined TMS-EEG study of short-latency afferent inhibition in the motor and dorsolateral prefrontal cortex.
    Noda Y; Cash RF; Zomorrodi R; Dominguez LG; Farzan F; Rajji TK; Barr MS; Chen R; Daskalakis ZJ; Blumberger DM
    J Neurophysiol; 2016 Sep; 116(3):938-48. PubMed ID: 27226450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
    Ferreri F; Ponzo D; Hukkanen T; Mervaala E; Könönen M; Pasqualetti P; Vecchio F; Rossini PM; Määttä S
    J Neurophysiol; 2012 Jul; 108(1):314-23. PubMed ID: 22457460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of waveform and current direction on short-interval intracortical facilitation: a paired-pulse TMS study.
    Delvendahl I; Lindemann H; Jung NH; Pechmann A; Siebner HR; Mall V
    Brain Stimul; 2014; 7(1):49-58. PubMed ID: 24075915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of short-term upper limb immobilization on sensory information processing and corticospinal excitability.
    Okamoto Y; Ishii D; Yamamoto S; Ishibashi K; Kohno Y; Numata K
    Exp Brain Res; 2022 Aug; 240(7-8):1979-1989. PubMed ID: 35589856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulse Duration as Well as Current Direction Determines the Specificity of Transcranial Magnetic Stimulation of Motor Cortex during Contraction.
    Hannah R; Rothwell JC
    Brain Stimul; 2017; 10(1):106-115. PubMed ID: 28029595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of verbal and spatial working memory on short- and long-latency sensorimotor circuits in the motor cortex.
    Lenizky MW; Meehan SK
    PLoS One; 2024; 19(5):e0302989. PubMed ID: 38753604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of sensory afferent input on local motor cortical excitatory circuitry in humans.
    Cash RF; Isayama R; Gunraj CA; Ni Z; Chen R
    J Physiol; 2015 Apr; 593(7):1667-84. PubMed ID: 25832926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings.
    Allison T; McCarthy G; Wood CC; Jones SJ
    Brain; 1991 Dec; 114 ( Pt 6)():2465-503. PubMed ID: 1782527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Somatosensory input to non-primary motor areas is enhanced during preparation of cued contraterlateral finger sequence movements.
    Brown MJ; Staines WR
    Behav Brain Res; 2015 Jun; 286():166-74. PubMed ID: 25746454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation.
    Murakami T; Sakuma K; Nomura T; Uemura Y; Hashimoto I; Nakashima K
    Exp Brain Res; 2008 Jan; 184(3):339-47. PubMed ID: 17724581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threshold tracking primary motor cortex inhibition: the influence of current direction.
    Cirillo J; Byblow WD
    Eur J Neurosci; 2016 Oct; 44(8):2614-2621. PubMed ID: 27529396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.