BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28735113)

  • 1. Characterisation of the secondary neutron field generated by a compact PET cyclotron with MCNP6 and experimental measurements.
    Alloni D; Prata M
    Appl Radiat Isot; 2017 Oct; 128():204-209. PubMed ID: 28735113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron spectra due (13)N production in a PET cyclotron.
    Benavente JA; Vega-Carrillo HR; Lacerda MA; Fonseca TC; Faria FP; da Silva TA
    Appl Radiat Isot; 2015 May; 99():20-4. PubMed ID: 25699664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility.
    Infantino A; Valtieri L; Cicoria G; Pancaldi D; Mostacci D; Marengo M
    Phys Med; 2015 Dec; 31(8):991-996. PubMed ID: 26420444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements.
    Infantino A; Cicoria G; Lucconi G; Pancaldi D; Vichi S; Zagni F; Mostacci D; Marengo M
    Phys Med; 2016 Dec; 32(12):1602-1608. PubMed ID: 27919623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source term calculation and validation for
    Konheiser J; Müller SE; Magin A; Naumann B; Ferrari A
    J Radiol Prot; 2019 Sep; 39(3):906-919. PubMed ID: 31216517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Source terms, shielding calculations and soil activation for a medical cyclotron.
    Konheiser J; Naumann B; Ferrari A; Brachem C; Müller SE
    J Radiol Prot; 2016 Dec; 36(4):819-831. PubMed ID: 27725341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the neutron flux during production of
    Jeffries BD; Algiere C; Gallagher JA; Nichols TH; So JR; Littlefield CW; Quinn M; Brockman JD
    Appl Radiat Isot; 2019 Dec; 154():108892. PubMed ID: 31525595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of thermal neutron flux around a PET cyclotron.
    Ogata Y; Ishigure N; Mochizuki S; Ito K; Hatano K; Abe J; Miyahara H; Masumoto K; Nakamura H
    Health Phys; 2011 May; 100 Suppl 2():S60-6. PubMed ID: 21451309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MONTE CARLO SIMULATION OF THE RADIATION SOURCE TERM FROM [18O]H2O CYCLOTRON TARGET BOMBARDMENT WITH PROTONS OF 16.5 MEV.
    Benavente-Castillo JA; da Silva TA; Fonseca TCF; Lacerda MAS
    Radiat Prot Dosimetry; 2023 Apr; 199(6):552-563. PubMed ID: 36916121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron measurements in the vicinity of a self-shielded PET cyclotron.
    Hertel NE; Shannon MP; Wang ZL; Valenzano MP; Mengesha W; Crowe RJ
    Radiat Prot Dosimetry; 2004; 108(3):255-61. PubMed ID: 15031447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting induced activity in the Havar foils of the (18)F production targets of a PET cyclotron and derived radiological risk.
    Martinez-Serrano JJ; Diez de Los Rios A
    Health Phys; 2014 Aug; 107(2):103-10. PubMed ID: 24978281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.
    De Smet V; Stichelbaut F; Vanaudenhove T; Mathot G; De Lentdecker G; Dubus A; Pauly N; Gerardy I
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):417-21. PubMed ID: 24255173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the secondary neutron field inside a cyclotron for production of radiopharmaceuticals.
    Zmeškal M; Košťál M; Czakoj T; Šimon J; Majerle M; Zach V; Lebeda O; Vadják Š; Antoš M; Matěj Z
    Appl Radiat Isot; 2023 Sep; 199():110865. PubMed ID: 37276660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed study of the distribution of activation inside the magnet coils of a compact PET cyclotron.
    Bonvin V; Bochud F; Damet J; Theis C; Vincke H; Geyer R
    Appl Radiat Isot; 2021 Feb; 168():109446. PubMed ID: 33358068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and Monte Carlo characterization of radionuclidic impurities originated from proton irradiation of [
    Alloni D; Prata M; Smilgys B
    Appl Radiat Isot; 2019 Apr; 146():84-89. PubMed ID: 30763819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling cyclotron-based production of radioisotopes via TOPAS.
    Broder BA; Freifelder R; Kucharski A; Chen CT
    Phys Med Biol; 2022 Dec; 68(1):. PubMed ID: 36571231
    [No Abstract]   [Full Text] [Related]  

  • 20. Theoretical estimation of
    Auditore L; Amato E; Baldari S
    Appl Radiat Isot; 2017 Apr; 122():229-234. PubMed ID: 28209500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.