These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 28735113)

  • 1. Characterisation of the secondary neutron field generated by a compact PET cyclotron with MCNP6 and experimental measurements.
    Alloni D; Prata M
    Appl Radiat Isot; 2017 Oct; 128():204-209. PubMed ID: 28735113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron spectra due (13)N production in a PET cyclotron.
    Benavente JA; Vega-Carrillo HR; Lacerda MA; Fonseca TC; Faria FP; da Silva TA
    Appl Radiat Isot; 2015 May; 99():20-4. PubMed ID: 25699664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility.
    Infantino A; Valtieri L; Cicoria G; Pancaldi D; Mostacci D; Marengo M
    Phys Med; 2015 Dec; 31(8):991-996. PubMed ID: 26420444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements.
    Infantino A; Cicoria G; Lucconi G; Pancaldi D; Vichi S; Zagni F; Mostacci D; Marengo M
    Phys Med; 2016 Dec; 32(12):1602-1608. PubMed ID: 27919623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source term calculation and validation for
    Konheiser J; Müller SE; Magin A; Naumann B; Ferrari A
    J Radiol Prot; 2019 Sep; 39(3):906-919. PubMed ID: 31216517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Source terms, shielding calculations and soil activation for a medical cyclotron.
    Konheiser J; Naumann B; Ferrari A; Brachem C; Müller SE
    J Radiol Prot; 2016 Dec; 36(4):819-831. PubMed ID: 27725341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the neutron flux during production of
    Jeffries BD; Algiere C; Gallagher JA; Nichols TH; So JR; Littlefield CW; Quinn M; Brockman JD
    Appl Radiat Isot; 2019 Dec; 154():108892. PubMed ID: 31525595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of thermal neutron flux around a PET cyclotron.
    Ogata Y; Ishigure N; Mochizuki S; Ito K; Hatano K; Abe J; Miyahara H; Masumoto K; Nakamura H
    Health Phys; 2011 May; 100 Suppl 2():S60-6. PubMed ID: 21451309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MONTE CARLO SIMULATION OF THE RADIATION SOURCE TERM FROM [18O]H2O CYCLOTRON TARGET BOMBARDMENT WITH PROTONS OF 16.5 MEV.
    Benavente-Castillo JA; da Silva TA; Fonseca TCF; Lacerda MAS
    Radiat Prot Dosimetry; 2023 Apr; 199(6):552-563. PubMed ID: 36916121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron measurements in the vicinity of a self-shielded PET cyclotron.
    Hertel NE; Shannon MP; Wang ZL; Valenzano MP; Mengesha W; Crowe RJ
    Radiat Prot Dosimetry; 2004; 108(3):255-61. PubMed ID: 15031447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting induced activity in the Havar foils of the (18)F production targets of a PET cyclotron and derived radiological risk.
    Martinez-Serrano JJ; Diez de Los Rios A
    Health Phys; 2014 Aug; 107(2):103-10. PubMed ID: 24978281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutron H*(10) inside a proton therapy facility: comparison between Monte Carlo simulations and WENDI-2 measurements.
    De Smet V; Stichelbaut F; Vanaudenhove T; Mathot G; De Lentdecker G; Dubus A; Pauly N; Gerardy I
    Radiat Prot Dosimetry; 2014 Oct; 161(1-4):417-21. PubMed ID: 24255173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the secondary neutron field inside a cyclotron for production of radiopharmaceuticals.
    Zmeškal M; Košťál M; Czakoj T; Šimon J; Majerle M; Zach V; Lebeda O; Vadják Š; Antoš M; Matěj Z
    Appl Radiat Isot; 2023 Sep; 199():110865. PubMed ID: 37276660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed study of the distribution of activation inside the magnet coils of a compact PET cyclotron.
    Bonvin V; Bochud F; Damet J; Theis C; Vincke H; Geyer R
    Appl Radiat Isot; 2021 Feb; 168():109446. PubMed ID: 33358068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and Monte Carlo characterization of radionuclidic impurities originated from proton irradiation of [
    Alloni D; Prata M; Smilgys B
    Appl Radiat Isot; 2019 Apr; 146():84-89. PubMed ID: 30763819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling cyclotron-based production of radioisotopes via TOPAS.
    Broder BA; Freifelder R; Kucharski A; Chen CT
    Phys Med Biol; 2022 Dec; 68(1):. PubMed ID: 36571231
    [No Abstract]   [Full Text] [Related]  

  • 20. Theoretical estimation of
    Auditore L; Amato E; Baldari S
    Appl Radiat Isot; 2017 Apr; 122():229-234. PubMed ID: 28209500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.