BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28735113)

  • 21. Neutron spectra around a tandem linear accelerator in the generation of (18)F with a bonner sphere spectrometer.
    Lagares JI; Araque JE; Méndez-Villafañe R; Arce P; Sansaloni F; Vela O; Díaz C; Campo X; Pérez JM
    Appl Radiat Isot; 2016 Aug; 114():154-8. PubMed ID: 27235889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of the neutron radiation field with activation foils and intermittent irradiations around a PETtrace biomedical cyclotron.
    Benavente-Castillo JA; Lacerda MAS; Ferreira AV; Dalle HM; Da Silva TA
    Appl Radiat Isot; 2019 Nov; 153():108823. PubMed ID: 31400649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production.
    Kambali I; Suryanto H; Parwanto
    Australas Phys Eng Sci Med; 2016 Jun; 39(2):403-12. PubMed ID: 26867652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monte Carlo neutron doses estimations inside a PET cyclotron vault room.
    Barquero R; Méndez R; Martí-Climent JM; Quincoces G
    Radiat Prot Dosimetry; 2007; 126(1-4):477-81. PubMed ID: 17504752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proton range monitoring with in-beam PET: Monte Carlo activity predictions and comparison with cyclotron data.
    Kraan AC; Battistoni G; Belcari N; Camarlinghi N; Cirrone GA; Cuttone G; Ferretti S; Ferrari A; Pirrone G; Romano F; Sala P; Sportelli G; Straub K; Tramontana A; Del Guerra A; Rosso V
    Phys Med; 2014 Jul; 30(5):559-69. PubMed ID: 24786664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of a Cyclotron Target for the Production of 11C with Geant4.
    Chiappiniello A; Zagni F; Infantino A; Vichi S; Cicoria G; Morigi MP; Marengo M
    Curr Radiopharm; 2018; 11(2):92-99. PubMed ID: 29651945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc.
    Lebeda O; van Lier EJ; Štursa J; Ráliš J; Zyuzin A
    Nucl Med Biol; 2012 Nov; 39(8):1286-91. PubMed ID: 22796396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benchmark experiments for cyclotron-based neutron source for BNCT.
    Yonai S; Itoga T; Baba M; Nakamura T; Yokobori H; Tahara Y
    Appl Radiat Isot; 2004 Nov; 61(5):997-1001. PubMed ID: 15308182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel experimental approach to characterize neutron fields at high- and low-energy particle accelerators.
    Braccini S; Casolaro P; Dellepiane G; Mateu I; Mercolli L; Pola A; Rastelli D; Scampoli P
    Sci Rep; 2022 Oct; 12(1):16886. PubMed ID: 36207394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GEANT4 simulation of cyclotron radioisotope production in a solid target.
    Poignant F; Penfold S; Asp J; Takhar P; Jackson P
    Phys Med; 2016 May; 32(5):728-34. PubMed ID: 27155937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS).
    Tanaka H; Sakurai Y; Suzuki M; Masunaga S; Mitsumoto T; Fujita K; Kashino G; Kinashi Y; Liu Y; Takada M; Ono K; Maruhashi A
    Appl Radiat Isot; 2011 Dec; 69(12):1642-5. PubMed ID: 21463945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.
    Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modification of the University of Washington Neutron Radiotherapy Facility for optimization of neutron capture enhanced fast-neutron therapy.
    Nigg DW; Wemple CA; Risler R; Hartwell JK; Harker YD; Laramore GE
    Med Phys; 2000 Feb; 27(2):359-67. PubMed ID: 10718140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development, design, and testing of a microwave-driven compact rotating-target D-D fast neutron generator for imaging applications.
    Kromer H; Adams R; Prasser HM
    Appl Radiat Isot; 2021 Aug; 174():109715. PubMed ID: 33930728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.
    Alloni D; Prata M; Salvini A; Ottolenghi A
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):261-5. PubMed ID: 25958412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytical shielding calculations for a proton therapy facility.
    Avery S; Ainsley C; Maughan R; McDonough J
    Radiat Prot Dosimetry; 2008; 131(2):167-79. PubMed ID: 18487617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Low-cost target system for neutron activation using a medical cyclotron. Application to the non-destructive analysis of gold and silver.
    Campbell M; Tikka A
    Appl Radiat Isot; 2022 Jun; 184():110117. PubMed ID: 35272232
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.
    Hsu YC; Lai BL; Sheu RJ
    Radiat Prot Dosimetry; 2016 Jan; 168(1):124-33. PubMed ID: 25628454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of Activation Isotopes in a CS-30 Cyclotron Vault.
    Abuhoza AA; Kassim HA; Alghamdi AA; Alrumayan FM; Arib M; Aljammaz IJ; ALQahtani M
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A scintillator-based approach to monitor secondary neutron production during proton therapy.
    Clarke SD; Pryser E; Wieger BM; Pozzi SA; Haelg RA; Bashkirov VA; Schulte RW
    Med Phys; 2016 Nov; 43(11):5915. PubMed ID: 27806590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.