These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Porous and biodegradable polycaprolactone-borophosphosilicate hybrid scaffolds for osteoblast infiltration and stem cell differentiation. Mondal D; Lin S; Rizkalla AS; Mequanint K J Mech Behav Biomed Mater; 2019 Apr; 92():162-171. PubMed ID: 30710831 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Allo BA; Rizkalla AS; Mequanint K Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002 [TBL] [Abstract][Full Text] [Related]
4. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties. Hendrikx S; Kascholke C; Flath T; Schumann D; Gressenbuch M; Schulze FP; Hacker MC; Schulz-Siegmund M Acta Biomater; 2016 Apr; 35():318-29. PubMed ID: 26925964 [TBL] [Abstract][Full Text] [Related]
5. Hydroxyapatite formation on sol-gel derived poly(ε-caprolactone)/bioactive glass hybrid biomaterials. Allo BA; Rizkalla AS; Mequanint K ACS Appl Mater Interfaces; 2012 Jun; 4(6):3148-56. PubMed ID: 22625179 [TBL] [Abstract][Full Text] [Related]
6. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks. Kascholke C; Hendrikx S; Flath T; Kuzmenka D; Dörfler HM; Schumann D; Gressenbuch M; Schulze FP; Schulz-Siegmund M; Hacker MC Acta Biomater; 2017 Nov; 63():336-349. PubMed ID: 28927930 [TBL] [Abstract][Full Text] [Related]
8. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. Allo BA; Lin S; Mequanint K; Rizkalla AS ACS Appl Mater Interfaces; 2013 Aug; 5(15):7574-83. PubMed ID: 23826710 [TBL] [Abstract][Full Text] [Related]
9. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095 [TBL] [Abstract][Full Text] [Related]
10. Characteristics and Effects on Dental Pulp Cells of a Polycaprolactone/Submicron Bioactive Glass Composite Scaffold. Wang S; Hu Q; Gao X; Dong Y J Endod; 2016 Jul; 42(7):1070-5. PubMed ID: 27325456 [TBL] [Abstract][Full Text] [Related]
11. Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro degradation pathways. Brugmans MCP; Sӧntjens SHM; Cox MAJ; Nandakumar A; Bosman AW; Mes T; Janssen HM; Bouten CVC; Baaijens FPT; Driessen-Mol A Acta Biomater; 2015 Nov; 27():21-31. PubMed ID: 26316031 [TBL] [Abstract][Full Text] [Related]
12. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites. Liu X; Hasan MS; Grant DM; Harper LT; Parsons AJ; Palmer G; Rudd CD; Ahmed I J Biomater Appl; 2014 Nov; 29(5):675-87. PubMed ID: 25028389 [TBL] [Abstract][Full Text] [Related]
13. Biological and mechanical properties of novel composites based on supramolecular polycaprolactone and functionalized hydroxyapatite. Shokrollahi P; Mirzadeh H; Scherman OA; Huck WT J Biomed Mater Res A; 2010 Oct; 95(1):209-21. PubMed ID: 20574978 [TBL] [Abstract][Full Text] [Related]
14. Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone analogous composites. Mohammadi MS; Ahmed I; Muja N; Almeida S; Rudd CD; Bureau MN; Nazhat SN Acta Biomater; 2012 Apr; 8(4):1616-26. PubMed ID: 22248526 [TBL] [Abstract][Full Text] [Related]
15. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. Gao C; Rahaman MN; Gao Q; Teramoto A; Abe K J Biomed Mater Res A; 2013 Jul; 101(7):2027-37. PubMed ID: 23255226 [TBL] [Abstract][Full Text] [Related]
16. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method. Lu L; Zhang Q; Wootton DM; Chiou R; Li D; Lu B; Lelkes PI; Zhou J J Appl Biomater Funct Mater; 2014 Dec; 12(3):145-54. PubMed ID: 24425377 [TBL] [Abstract][Full Text] [Related]
17. Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites. Sharmin N; Hasan MS; Parsons AJ; Rudd CD; Ahmed I J Mech Behav Biomed Mater; 2016 Jun; 59():41-56. PubMed ID: 26745720 [TBL] [Abstract][Full Text] [Related]
18. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
19. Compressive properties and degradability of poly(epsilon-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. Ang KC; Leong KF; Chua CK; Chandrasekaran M J Biomed Mater Res A; 2007 Mar; 80(3):655-60. PubMed ID: 17051539 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Poh PS; Hutmacher DW; Stevens MM; Woodruff MA Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]