BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 28735167)

  • 1. First observation of metal ion-induced structural fluctuations of α-helical peptides by using diffracted X-ray tracking.
    Usui D; Inaba S; Sekiguchi H; Sasaki YC; Tanaka T; Oda M
    Biophys Chem; 2017 Sep; 228():81-86. PubMed ID: 28735167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational changes of α-helical peptides with different hydrophobic residues induced by metal-ion binding.
    Tanaka M; Kato T; Oda M
    Biophys Chem; 2021 Oct; 277():106661. PubMed ID: 34388679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft metal ions, Cd(II) and Hg(II), induce triple-stranded alpha-helical assembly and folding of a de novo designed peptide in their trigonal geometries.
    Li X; Suzuki K; Kanaori K; Tajima K; Kashiwada A; Hiroaki H; Kohda D; Tanaka T
    Protein Sci; 2000 Jul; 9(7):1327-33. PubMed ID: 10933497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal ion mediated transition from random coil to β-sheet and aggregation of Bri2-23, a natural inhibitor of Aβ aggregation.
    Luczkowski M; De Ricco R; Stachura M; Potocki S; Hemmingsen L; Valensin D
    Metallomics; 2015 Mar; 7(3):478-90. PubMed ID: 25633876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a selective metal ion switch for self-assembly of peptide-based fibrils.
    Dublin SN; Conticello VP
    J Am Chem Soc; 2008 Jan; 130(1):49-51. PubMed ID: 18067302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A designed cavity in the hydrophobic core of a four-alpha-helix bundle improves volatile anesthetic binding affinity.
    Johansson JS; Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Feb; 37(5):1421-9. PubMed ID: 9477971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the hydrophobic interface and transition metal ions on the conformation of amyloidogenic model peptides.
    Hoernke M; Koksch B; Brezesinski G
    Biophys Chem; 2010 Aug; 150(1-3):64-72. PubMed ID: 20347516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium.
    Wieprecht T; Apostolov O; Beyermann M; Seelig J
    J Mol Biol; 1999 Dec; 294(3):785-94. PubMed ID: 10610796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cd2+-induced conformational change of a synthetic metallopeptide: slow metal binding followed by a slower conformational change.
    Mukherjee M; Zhu X; Ogawa MY
    Inorg Chem; 2008 Jun; 47(11):4430-2. PubMed ID: 18442233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of thiolate rich metal binding sites within a peptidic framework.
    Łuczkowski M; Stachura M; Schirf V; Demeler B; Hemmingsen L; Pecoraro VL
    Inorg Chem; 2008 Dec; 47(23):10875-88. PubMed ID: 18959366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new mechanism for metal ion-assisted interchain helix assembly in a naturally occurring peptide mediated by optimally spaced gamma-carboxyglutamic acid residues.
    Dai Q; Prorok M; Castellino FJ
    J Mol Biol; 2004 Feb; 336(3):731-44. PubMed ID: 15095984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein.
    Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL
    Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the integrity of designed homomeric parallel three-stranded coiled coils in the presence of metal ions.
    Iranzo O; Ghosh D; Pecoraro VL
    Inorg Chem; 2006 Dec; 45(25):9959-73. PubMed ID: 17140192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in heavy metal binding to cysteine-containing coiled-coil peptides.
    Luther P; Boyle AL
    J Pept Sci; 2024 Mar; 30(3):e3549. PubMed ID: 37828738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-binding induced conformational change of c-Myb R2R3 analyzed using diffracted X-ray tracking.
    Hosoe Y; Inaba S; Sekiguchi H; Sasaki YC; Oda M
    Biochem Biophys Res Commun; 2018 Sep; 503(1):338-343. PubMed ID: 29885838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enthalpy of helix-coil transition: missing link in rationalizing the thermodynamics of helix-forming propensities of the amino acid residues.
    Richardson JM; Lopez MM; Makhatadze GI
    Proc Natl Acad Sci U S A; 2005 Feb; 102(5):1413-8. PubMed ID: 15671166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The enthalpy of the alanine peptide helix measured by isothermal titration calorimetry using metal-binding to induce helix formation.
    Lopez MM; Chin DH; Baldwin RL; Makhatadze GI
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1298-302. PubMed ID: 11818561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, α3DIV, that Sequesters Toxic Heavy Metals.
    Plegaria JS; Dzul SP; Zuiderweg ER; Stemmler TL; Pecoraro VL
    Biochemistry; 2015 May; 54(18):2858-73. PubMed ID: 25790102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of the volatile anesthetic halothane to the hydrophobic core of a tetra-alpha-helix-bundle protein.
    Johansson JS; Rabanal F; Dutton PL
    J Pharmacol Exp Ther; 1996 Oct; 279(1):56-61. PubMed ID: 8858975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.