These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28735230)

  • 41. Control of organic dusts from bedding choppers in dairy barns. National Institute for Occupational Safety and Health.
    Appl Occup Environ Hyg; 1999 Nov; 14(11):732-3. PubMed ID: 10590545
    [No Abstract]   [Full Text] [Related]  

  • 42. Work Tasks as Determinants of Grain Dust and Microbial Exposure in the Norwegian Grain and Compound Feed Industry.
    Straumfors A; Heldal KK; Wouters IM; Eduard W
    Ann Occup Hyg; 2015 Jul; 59(6):724-36. PubMed ID: 25743566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Airborne microorganisms, endotoxin, and dust concentration in wood factories in Italy.
    Gioffrè A; Marramao A; Iannò A
    Ann Occup Hyg; 2012 Mar; 56(2):161-9. PubMed ID: 21976306
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessment of microbial exposure risks from handling of biofuel wood chips and straw--effect of outdoor storage.
    Sebastian A; Madsen AM; Martensson L; Pomorska D; Larsson L
    Ann Agric Environ Med; 2006; 13(1):139-45. PubMed ID: 16858899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessment of exposure to organic dust in a hemp processing plant.
    Fishwick D; Allan LJ; Wright A; Curran AD
    Ann Occup Hyg; 2001 Oct; 45(7):577-83. PubMed ID: 11583659
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dust, endotoxin, fungi, and bacteria exposure as determined by work task, season, and type of plant in a flower greenhouse.
    Thilsing T; Madsen AM; Basinas I; Schlünssen V; Tendal K; Bælum J
    Ann Occup Hyg; 2015 Mar; 59(2):142-57. PubMed ID: 25389370
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Occupational exposure to poultry dust and effects on the respiratory system in workers.
    Viegas S; Faísca VM; Dias H; Clérigo A; Carolino E; Viegas C
    J Toxicol Environ Health A; 2013; 76(4-5):230-9. PubMed ID: 23514065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exposure of hop growers to bioaerosols.
    Gora A; Skórska C; Sitkowska J; Prazmo Z; Krysińska-Traczyk E; Urbanowicz B; Dutkiewicz J
    Ann Agric Environ Med; 2004; 11(1):129-38. PubMed ID: 15236510
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Agricultural seed dust as a potential cause of organic dust toxic syndrome.
    Smit LA; Wouters IM; Hobo MM; Eduard W; Doekes G; Heederik D
    Occup Environ Med; 2006 Jan; 63(1):59-67. PubMed ID: 16361407
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Seasonal variation in aerobic bacterial populations and endotoxin concentrations in grain dusts.
    DeLucca AJ; Palmgren MS
    Am Ind Hyg Assoc J; 1987 Feb; 48(2):106-10. PubMed ID: 3565264
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inflammatory response and genotoxicity of seven wood dusts in the human epithelial cell line A549.
    Bornholdt J; Saber AT; Sharma AK; Savolainen K; Vogel U; Wallin H
    Mutat Res; 2007 Aug; 632(1-2):78-88. PubMed ID: 17590384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compartmentalization of the inflammatory response to inhaled grain dust.
    Becker S; Clapp WA; Quay J; Frees KL; Koren HS; Schwartz DA
    Am J Respir Crit Care Med; 1999 Oct; 160(4):1309-18. PubMed ID: 10508823
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Air exposure as a possible route for ESBL in pig farmers.
    Dohmen W; Schmitt H; Bonten M; Heederik D
    Environ Res; 2017 May; 155():359-364. PubMed ID: 28273621
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recombinant factor C (rFC) assay and gas chromatography/mass spectrometry (GC/MS) analysis of endotoxin variability in four agricultural dusts.
    Saito R; Cranmer BK; Tessari JD; Larsson L; Mehaffy JM; Keefe TJ; Reynolds SJ
    Ann Occup Hyg; 2009 Oct; 53(7):713-22. PubMed ID: 19638393
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Response of sawmill workers to work-related airborne allergens.
    Dutkiewicz J; Skórska C; Dutkiewicz E; Matuszyk A; Sitkowska J; Krysińska-Traczyk E
    Ann Agric Environ Med; 2001; 8(1):81-90. PubMed ID: 11426929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. New formaldehyde-free adhesives for wood manufacturing: In vitro evaluation of potential toxicity of fine dust collected during wood sawing using a new experimental model to simulate occupational inhalation exposure.
    Cavallo D; Fresegna AM; Ciervo A; Ursini CL; Maiello R; Del Frate V; Ferrante R; Mabilia R; Pizzo B; Grossi B; Ciccioli P; Ciccioli P; Iavicoli S
    Toxicology; 2022 Jan; 466():153085. PubMed ID: 34968639
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exposure to flour dust in South African supermarket bakeries: modeling of baseline measurements of an intervention study.
    Baatjies R; Meijster T; Lopata A; Sander I; Raulf-Heimsoth M; Heederik D; Jeebhay M
    Ann Occup Hyg; 2010 Apr; 54(3):309-18. PubMed ID: 20200089
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparing milled fiber, Quebec ore, and textile factory dust: has another piece of the asbestos puzzle fallen into place?
    Berman DW
    Crit Rev Toxicol; 2010; 40(2):151-88. PubMed ID: 20085481
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessment of personal direct-reading dust monitors for the measurement of airborne inhalable dust.
    Thorpe A
    Ann Occup Hyg; 2007 Jan; 51(1):97-112. PubMed ID: 16799158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.