These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 2873534)

  • 1. Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington's disease.
    Cross AJ; Slater P; Reynolds GP
    Neurosci Lett; 1986 Jun; 67(2):198-202. PubMed ID: 2873534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases.
    Greenamyre JT; Penney JB; Young AB; D'Amato CJ; Hicks SP; Shoulson I
    Science; 1985 Mar; 227(4693):1496-9. PubMed ID: 2858129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased receptor-binding sites for kainic acid in brains of patients with Huntington's disease.
    London ED; Yamamura HI; Bird ED; Coyle JT
    Biol Psychiatry; 1981 Feb; 16(2):155-62. PubMed ID: 6452910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficit of [3H]L-689,560 binding to the glycine site of the glutamate/NMDA receptor in the brain in Huntington's disease.
    Reynolds GP; Pearson SJ; Hutson PH
    J Neurol Sci; 1994 Aug; 125(1):46-9. PubMed ID: 7964888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional distribution of pre- and postsynaptic glutamatergic function in Alzheimer's disease.
    Cowburn R; Hardy J; Roberts P; Briggs R
    Brain Res; 1988 Jun; 452(1-2):403-7. PubMed ID: 2900052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo high-affinity uptake and axonal transport of D-[2,3-3H]aspartate in excitatory neurons.
    Storm-Mathisen J; Wold JE
    Brain Res; 1981 Dec; 230(1-2):427-33. PubMed ID: 6172187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Huntington's disease: studies on brain free amino acids.
    Bonilla E; Prasad AL; Arrieta A
    Life Sci; 1988; 42(11):1153-8. PubMed ID: 2894604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington's disease.
    Antonini A; Leenders KL; Spiegel R; Meier D; Vontobel P; Weigell-Weber M; Sanchez-Pernaute R; de YĆ©benez JG; Boesiger P; Weindl A; Maguire RP
    Brain; 1996 Dec; 119 ( Pt 6)():2085-95. PubMed ID: 9010012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What excitotoxin kills striatal neurons in Huntington's disease? Clues from neurochemical studies.
    Perry TL; Hansen S
    Neurology; 1990 Jan; 40(1):20-4. PubMed ID: 1967491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [3H]paroxetine binding is altered in the hippocampus but not the frontal cortex or caudate nucleus from subjects with schizophrenia.
    Dean B; Opeskin K; Pavey G; Naylor L; Hill C; Keks N; Copolov DL
    J Neurochem; 1995 Mar; 64(3):1197-202. PubMed ID: 7861151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nigral dopamine type-1 receptors are reduced in Huntington's disease: a postmortem autoradiographic study using [3H]SCH 23390 and correlation with [3H]forskolin binding.
    Filloux F; Wagster MV; Folstein S; Price DL; Hedreen JC; Dawson TM; Wamsley JK
    Exp Neurol; 1990 Nov; 110(2):219-27. PubMed ID: 2146140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylmercury-induced movement and postural disorders in developing rat: high-affinity uptake of choline, glutamate, and gamma-aminobutyric acid in the cerebral cortex and caudate-putamen.
    O'Kusky JR; McGeer EG
    J Neurochem; 1989 Oct; 53(4):999-1006. PubMed ID: 2570131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of D-[3H]aspartic acid from the rat striatum. Effect of veratridine-evoked depolarization, fronto-parietal cortex ablation, and striatal lesions with kainic acid.
    Arqueros L; Abarca J; Bustos G
    Biochem Pharmacol; 1985 Apr; 34(8):1217-24. PubMed ID: 2581579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains.
    Noga JT; Hyde TM; Herman MM; Spurney CF; Bigelow LB; Weinberger DR; Kleinman JE
    Synapse; 1997 Nov; 27(3):168-76. PubMed ID: 9329152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kainic acid binding in human caudate nucleus: effect of Huntington's disease.
    Henke H
    Neurosci Lett; 1979 Oct; 14(2-3):247-51. PubMed ID: 161000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acid neurotransmitter abnormalities in Huntington's disease and the quinolinic acid animal model of Huntington's disease.
    Ellison DW; Beal MF; Mazurek MF; Malloy JR; Bird ED; Martin JB
    Brain; 1987 Dec; 110 ( Pt 6)():1657-73. PubMed ID: 2892568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The association of [3H]D-aspartate binding and high-affinity glutamate uptake in the human brain.
    Cross AJ; Skan WJ; Slater P
    Neurosci Lett; 1986 Jan; 63(2):121-4. PubMed ID: 2869454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficits of [3H]D-aspartate binding to glutamate uptake sites in striatal and accumbens tissue in patients with schizophrenia.
    Aparicio-Legarza MI; Cutts AJ; Davis B; Reynolds GP
    Neurosci Lett; 1997 Aug; 232(1):13-6. PubMed ID: 9292880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal metabolite changes in Huntington's disease during disease onset.
    van den Bogaard SJ; Dumas EM; Teeuwisse WM; Kan HE; Webb A; van Buchem MA; Roos RA; van der Grond J
    J Huntingtons Dis; 2014; 3(4):377-86. PubMed ID: 25575959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurochemical correlates of caudate atrophy in Huntington's disease.
    Padowski JM; Weaver KE; Richards TL; Laurino MY; Samii A; Aylward EH; Conley KE
    Mov Disord; 2014 Mar; 29(3):327-35. PubMed ID: 24442623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.