These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28735388)

  • 41. The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration, high-salinity stress and light signaling pathways.
    Milla MA; Townsend J; Chang IF; Cushman JC
    Plant Mol Biol; 2006 May; 61(1-2):13-30. PubMed ID: 16786289
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis.
    Zhao Y; Ma Q; Jin X; Peng X; Liu J; Deng L; Yan H; Sheng L; Jiang H; Cheng B
    Plant Cell Physiol; 2014 Jun; 55(6):1142-56. PubMed ID: 24817160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response.
    Kim JH
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants.
    Yoshida T; Mogami J; Yamaguchi-Shinozaki K
    Curr Opin Plant Biol; 2014 Oct; 21():133-139. PubMed ID: 25104049
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ubiquitin-specific protease 24 negatively regulates abscisic acid signalling in Arabidopsis thaliana.
    Zhao J; Zhou H; Zhang M; Gao Y; Li L; Gao Y; Li M; Yang Y; Guo Y; Li X
    Plant Cell Environ; 2016 Feb; 39(2):427-40. PubMed ID: 26290265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A truncated Arabidopsis NUCLEOSOME ASSEMBLY PROTEIN 1, AtNAP1;3T, alters plant growth responses to abscisic acid and salt in the Atnap1;3-2 mutant.
    Liu ZQ; Gao J; Dong AW; Shen WH
    Mol Plant; 2009 Jul; 2(4):688-699. PubMed ID: 19825649
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components.
    Peirats-Llobet M; Han SK; Gonzalez-Guzman M; Jeong CW; Rodriguez L; Belda-Palazon B; Wagner D; Rodriguez PL
    Mol Plant; 2016 Jan; 9(1):136-147. PubMed ID: 26499068
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid.
    Magnan F; Ranty B; Charpenteau M; Sotta B; Galaud JP; Aldon D
    Plant J; 2008 Nov; 56(4):575-89. PubMed ID: 18643966
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biological Function of Changes in RNA Metabolism in Plant Adaptation to Abiotic Stress.
    Matsui A; Nakaminami K; Seki M
    Plant Cell Physiol; 2019 Sep; 60(9):1897-1905. PubMed ID: 31093678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small RNA Mobility: Spread of RNA Silencing Effectors and its Effect on Developmental Processes and Stress Adaptation in Plants.
    Pagliarani C; Gambino G
    Int J Mol Sci; 2019 Sep; 20(17):. PubMed ID: 31484348
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low and high ψ ways from post-transcriptional RNA regulation to drought tolerance.
    Deák C; Jäger K; Fábián A; Papp I
    Plant Signal Behav; 2010 Dec; 5(12):1549-52. PubMed ID: 21139424
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Epigenetic regulation in plant abiotic stress responses.
    Chang YN; Zhu C; Jiang J; Zhang H; Zhu JK; Duan CG
    J Integr Plant Biol; 2020 May; 62(5):563-580. PubMed ID: 31872527
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Accumulation of an ABA analogue in the wilty tomato mutant, flacca.
    Bowman WR; Linforth RS; Rossall S; Taylor IB
    Biochem Genet; 1984 Apr; 22(3-4):369-78. PubMed ID: 6233967
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epigenetics and plant evolution.
    Rapp RA; Wendel JF
    New Phytol; 2005 Oct; 168(1):81-91. PubMed ID: 16159323
    [TBL] [Abstract][Full Text] [Related]  

  • 55. AT Hook-Like 10 phosphorylation determines ribosomal RNA processing 6-like 1 (RRP6L1) chromatin association and growth suppression during water stress.
    Wong MM; Huang XJ; Bau YC; Verslues PE
    Plant Cell Environ; 2024 Jan; 47(1):24-37. PubMed ID: 37727952
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Coupling epigenetics and RNA polyadenylation: missing links.
    Lin J; Li QQ
    Trends Plant Sci; 2023 Feb; 28(2):223-234. PubMed ID: 36175275
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role of RNA modifications in cancer.
    Barbieri I; Kouzarides T
    Nat Rev Cancer; 2020 Jun; 20(6):303-322. PubMed ID: 32300195
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiple mechanisms and challenges for the application of allopolyploidy in plants.
    Osabe K; Kawanabe T; Sasaki T; Ishikawa R; Okazaki K; Dennis ES; Kazama T; Fujimoto R
    Int J Mol Sci; 2012; 13(7):8696-8721. PubMed ID: 22942729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Current research frontiers in plant epigenetics: an introduction to a Virtual Issue.
    Eriksson MC; Szukala A; Tian B; Paun O
    New Phytol; 2020 Apr; 226(2):285-288. PubMed ID: 32180259
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chromatin, Epigenetics and Plant Physiology.
    Fojtová M; Fajkus J
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.