BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28735418)

  • 1. Gap junction communication between chromaffin cells: the hidden face of adrenal stimulus-secretion coupling.
    Guérineau NC
    Pflugers Arch; 2018 Jan; 470(1):89-96. PubMed ID: 28735418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla.
    Guérineau NC
    Vitam Horm; 2024; 124():221-295. PubMed ID: 38408800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting the stimulus-secretion coupling in the adrenal medulla: role of gap junction-mediated intercellular communication.
    Colomer C; Desarménien MG; Guérineau NC
    Mol Neurobiol; 2009 Aug; 40(1):87-100. PubMed ID: 19444654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental and stress-induced remodeling of cell–cell communication in the adrenal medullary tissue.
    Guérineau NC; Desarménien MG
    Cell Mol Neurobiol; 2010 Nov; 30(8):1425-31. PubMed ID: 21061165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gap junction-mediated intercellular communication in the adrenal medulla: an additional ingredient of stimulus-secretion coupling regulation.
    Colomer C; Martin AO; Desarménien MG; Guérineau NC
    Biochim Biophys Acta; 2012 Aug; 1818(8):1937-51. PubMed ID: 21839720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional chromaffin cell plasticity in response to stress: focus on nicotinic, gap junction, and voltage-gated Ca2+ channels.
    Guérineau NC; Desarménien MG; Carabelli V; Carbone E
    J Mol Neurosci; 2012 Oct; 48(2):368-86. PubMed ID: 22252244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional remodeling of gap junction-mediated electrical communication between adrenal chromaffin cells in stressed rats.
    Colomer C; Olivos Ore LA; Coutry N; Mathieu MN; Arthaud S; Fontanaud P; Iankova I; Macari F; Thouënnon E; Yon L; Anouar Y; Guérineau NC
    J Neurosci; 2008 Jun; 28(26):6616-26. PubMed ID: 18579734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress-induced intercellular communication remodeling in the rat adrenal medulla.
    Colomer C; Lafont C; Guérineau NC
    Ann N Y Acad Sci; 2008 Dec; 1148():106-11. PubMed ID: 19120097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gap junctions mediate electrical signaling and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: A role in catecholamine release.
    Martin AO; Mathieu MN; Chevillard C; Guérineau NC
    J Neurosci; 2001 Aug; 21(15):5397-405. PubMed ID: 11466411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gap junction signalling is a stress-regulated component of adrenal neuroendocrine stimulus-secretion coupling in vivo.
    Desarménien MG; Jourdan C; Toutain B; Vessières E; Hormuzdi SG; Guérineau NC
    Nat Commun; 2013; 4():2938. PubMed ID: 24356378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for long-lasting cholinergic control of gap junctional communication between adrenal chromaffin cells.
    Martin AO; Mathieu MN; Guérineau NC
    J Neurosci; 2003 May; 23(9):3669-78. PubMed ID: 12736338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is PACAP the major neurotransmitter for stress transduction at the adrenomedullary synapse?
    Smith CB; Eiden LE
    J Mol Neurosci; 2012 Oct; 48(2):403-12. PubMed ID: 22610912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pituitary adenylate cyclase-activating peptide enhances electrical coupling in the mouse adrenal medulla.
    Hill J; Lee SK; Samasilp P; Smith C
    Am J Physiol Cell Physiol; 2012 Aug; 303(3):C257-66. PubMed ID: 22592408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maternal perinatal undernutrition alters postnatal development of chromaffin cells in the male rat adrenal medulla.
    Molendi-Coste O; Laborie C; Scarpa MC; Montel V; Vieau D; Breton C
    Neuroendocrinology; 2009; 90(1):54-66. PubMed ID: 19276635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased secretory capacity of mouse adrenal chromaffin cells by chronic intermittent hypoxia: involvement of protein kinase C.
    Kuri BA; Khan SA; Chan SA; Prabhakar NR; Smith CB
    J Physiol; 2007 Oct; 584(Pt 1):313-9. PubMed ID: 17702812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha2-adrenoceptors in adrenomedullary chromaffin cells: functional role and pathophysiological implications.
    Artalejo AR; Olivos-Oré LA
    Pflugers Arch; 2018 Jan; 470(1):61-66. PubMed ID: 28836008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catecholamine release from the adrenal medulla.
    Perlman RL; Chalfie M
    Clin Endocrinol Metab; 1977 Nov; 6(3):551-76. PubMed ID: 338214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla.
    de Diego AM; Gandía L; García AG
    Acta Physiol (Oxf); 2008 Feb; 192(2):287-301. PubMed ID: 18005392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABA
    Alejandre-García T; Peña-Del Castillo JG; Hernández-Cruz A
    Pflugers Arch; 2018 Jan; 470(1):67-77. PubMed ID: 29101464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of catecholamine release in human adrenal chromaffin cells by β-adrenoceptors.
    Cortez V; Santana M; Marques AP; Mota A; Rosmaninho-Salgado J; Cavadas C
    Neurochem Int; 2012 Mar; 60(4):387-93. PubMed ID: 22261351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.