BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28735418)

  • 21. Activation of angiotensin II subtype 2 receptor induces catecholamine release in an extracellular Ca(2+)-dependent manner through a decrease of cyclic guanosine 3',5'-monophosphate production in cultured porcine adrenal medullary chromaffin Cells.
    Takekoshi K; Ishii K; Kawakami Y; Isobe K; Nakai T
    Endocrinology; 2001 Jul; 142(7):3075-86. PubMed ID: 11416030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholinergic and peptidergic neurotransmission in the adrenal medulla: A dynamic control of stimulus-secretion coupling.
    Guérineau NC
    IUBMB Life; 2020 Apr; 72(4):553-567. PubMed ID: 31301221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of heart failure on catecholamine granule morphology and storage in chromaffin cells.
    Mahata SK; Zheng H; Mahata S; Liu X; Patel KP
    J Endocrinol; 2016 Sep; 230(3):309-23. PubMed ID: 27402067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual action of leptin on rest-firing and stimulated catecholamine release via phosphoinositide 3-kinase-driven BK channel up-regulation in mouse chromaffin cells.
    Gavello D; Vandael D; Gosso S; Carbone E; Carabelli V
    J Physiol; 2015 Nov; 593(22):4835-53. PubMed ID: 26282459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms in histamine-mediated secretion from adrenal chromaffin cells.
    Marley PD
    Pharmacol Ther; 2003 Apr; 98(1):1-34. PubMed ID: 12667886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells.
    Polo-Parada L; Chan SA; Smith C
    Neuroscience; 2006 Dec; 143(2):445-59. PubMed ID: 16962713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of muscarinic receptor subtypes involved in catecholamine secretion in adrenal medullary chromaffin cells by genetic deletion.
    Harada K; Matsuoka H; Miyata H; Matsui M; Inoue M
    Br J Pharmacol; 2015 Mar; 172(5):1348-59. PubMed ID: 25393049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional characterization of alpha9-containing cholinergic nicotinic receptors in the rat adrenal medulla: implication in stress-induced functional plasticity.
    Colomer C; Olivos-Oré LA; Vincent A; McIntosh JM; Artalejo AR; Guérineau NC
    J Neurosci; 2010 May; 30(19):6732-42. PubMed ID: 20463235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catecholamine secretion from rat foetal adrenal chromaffin cells and hypoxia sensitivity.
    Bournaud R; Hidalgo J; Yu H; Girard E; Shimahara T
    Pflugers Arch; 2007 Apr; 454(1):83-92. PubMed ID: 17165071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse.
    Neher E
    Pflugers Arch; 2006 Dec; 453(3):261-8. PubMed ID: 17016737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors.
    Dzhura EV; He W; Currie KP
    J Pharmacol Exp Ther; 2006 Mar; 316(3):1165-74. PubMed ID: 16280412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GPCRs of adrenal chromaffin cells & catecholamines: The plot thickens.
    Lymperopoulos A; Brill A; McCrink KA
    Int J Biochem Cell Biol; 2016 Aug; 77(Pt B):213-9. PubMed ID: 26851510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synaptotagmin-7 facilitates acetylcholine release in splanchnic nerve-chromaffin cell synapses during nerve activity.
    Caballero-Florán RN; Bendahmane M; Gupta JP; Chen X; Wu X; Morales A; Anantharam A; Jenkins PM
    Neurosci Lett; 2023 Mar; 800():137129. PubMed ID: 36796621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Syndapin 3 modulates fusion pore expansion in mouse neuroendocrine chromaffin cells.
    Samasilp P; Lopin K; Chan SA; Ramachandran R; Smith C
    Am J Physiol Cell Physiol; 2014 May; 306(9):C831-43. PubMed ID: 24500282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential Modulation of Catecholamine and Adipokine Secretion by the Short Chain Fatty Acid Receptor FFAR3 and α
    Nagliya D; Baggio Lopez T; Del Calvo G; Stoicovy RA; Borges JI; Suster MS; Lymperopoulos A
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synapsin II negatively regulates catecholamine release.
    Villanueva M; Thornley K; Augustine GJ; Wightman RM
    Brain Cell Biol; 2006 Jun; 35(2-3):125-36. PubMed ID: 17957479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Serotonin and Serotonin Transporters in the Adrenal Medulla: A Potential Hub for Modulation of the Sympathetic Stress Response.
    Brindley RL; Bauer MB; Blakely RD; Currie KPM
    ACS Chem Neurosci; 2017 May; 8(5):943-954. PubMed ID: 28406285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vivo demonstration of a paracrine, inhibitory action of Met-enkephalin on adrenomedullary catecholamine release in the rat.
    Jarry H; Dietrich M; Barthel A; Giesler A; Wuttke W
    Endocrinology; 1989 Aug; 125(2):624-9. PubMed ID: 2752969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between chromaffin and sustentacular cells in adrenal medulla of viscacha (Lagostomus maximus maximus).
    Rodriguez H; Filippa V; Mohamed F; Dominguez S; Scardapane L
    Anat Histol Embryol; 2007 Jun; 36(3):182-5. PubMed ID: 17535349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agrin mediates a rapid switch from electrical coupling to chemical neurotransmission during synaptogenesis.
    Martin AO; Alonso G; Guérineau NC
    J Cell Biol; 2005 May; 169(3):503-14. PubMed ID: 15883200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.