These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Analysis of amplicon-based NGS data from neurological disease gene panels: a new method for allele drop-out management. Zucca S; Villaraggia M; Gagliardi S; Grieco GS; Valente M; Cereda C; Magni P BMC Bioinformatics; 2016 Nov; 17(Suppl 12):339. PubMed ID: 28185542 [TBL] [Abstract][Full Text] [Related]
3. Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics. Hancock-Hanser BL; Frey A; Leslie MS; Dutton PH; Archer FI; Morin PA Mol Ecol Resour; 2013 Mar; 13(2):254-68. PubMed ID: 23351075 [TBL] [Abstract][Full Text] [Related]
4. Clinical application of amplicon-based next-generation sequencing in cancer. Chang F; Li MM Cancer Genet; 2013 Dec; 206(12):413-9. PubMed ID: 24332266 [TBL] [Abstract][Full Text] [Related]
5. Amplification of overlapping DNA amplicons in a single-tube multiplex PCR for targeted next-generation sequencing of BRCA1 and BRCA2. Schenk D; Song G; Ke Y; Wang Z PLoS One; 2017; 12(7):e0181062. PubMed ID: 28704513 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of an amplicon-based next-generation sequencing panel for detection of BRCA1 and BRCA2 genetic variants. Shin S; Hwang IS; Lee ST; Choi JR Breast Cancer Res Treat; 2016 Aug; 158(3):433-40. PubMed ID: 27383479 [TBL] [Abstract][Full Text] [Related]
8. Proof of concept for multiplex amplicon sequencing for mutation identification using the MinION nanopore sequencer. Whitford W; Hawkins V; Moodley KS; Grant MJ; Lehnert K; Snell RG; Jacobsen JC Sci Rep; 2022 May; 12(1):8572. PubMed ID: 35595858 [TBL] [Abstract][Full Text] [Related]
9. Routine Clinical Mutation Profiling of Non-Small Cell Lung Cancer Using Next-Generation Sequencing. Deeb KK; Hohman CM; Risch NF; Metzger DJ; Starostik P Arch Pathol Lab Med; 2015 Jul; 139(7):913-21. PubMed ID: 26125431 [TBL] [Abstract][Full Text] [Related]
10. Integration of Technical, Bioinformatic, and Variant Assessment Approaches in the Validation of a Targeted Next-Generation Sequencing Panel for Myeloid Malignancies. Thomas M; Sukhai MA; Zhang T; Dolatshahi R; Harbi D; Garg S; Misyura M; Pugh T; Stockley TL; Kamel-Reid S Arch Pathol Lab Med; 2017 Jun; 141(6):759-775. PubMed ID: 28557600 [TBL] [Abstract][Full Text] [Related]
11. A novel ultra high-throughput 16S rRNA gene amplicon sequencing library preparation method for the Illumina HiSeq platform. de Muinck EJ; Trosvik P; Gilfillan GD; Hov JR; Sundaram AYM Microbiome; 2017 Jul; 5(1):68. PubMed ID: 28683838 [TBL] [Abstract][Full Text] [Related]
12. Coverage analysis in a targeted amplicon-based next-generation sequencing panel for myeloid neoplasms. Yan B; Hu Y; Ng C; Ban KH; Tan TW; Huan PT; Lee PL; Chiu L; Seah E; Ng CH; Koay ES; Chng WJ J Clin Pathol; 2016 Sep; 69(9):801-4. PubMed ID: 26896490 [TBL] [Abstract][Full Text] [Related]
13. Clustering of circular consensus sequences: accurate error correction and assembly of single molecule real-time reads from multiplexed amplicon libraries. Francis F; Dumas MD; Davis SB; Wisser RJ BMC Bioinformatics; 2018 Aug; 19(1):302. PubMed ID: 30126356 [TBL] [Abstract][Full Text] [Related]
14. Clinical Applications of Next-Generation Sequencing in Cancer Diagnosis. Sabour L; Sabour M; Ghorbian S Pathol Oncol Res; 2017 Apr; 23(2):225-234. PubMed ID: 27722982 [TBL] [Abstract][Full Text] [Related]
15. Clinical Next-Generation Sequencing Pipeline Outperforms a Combined Approach Using Sanger Sequencing and Multiplex Ligation-Dependent Probe Amplification in Targeted Gene Panel Analysis. Schenkel LC; Kerkhof J; Stuart A; Reilly J; Eng B; Woodside C; Levstik A; Howlett CJ; Rupar AC; Knoll JHM; Ainsworth P; Waye JS; Sadikovic B J Mol Diagn; 2016 Sep; 18(5):657-667. PubMed ID: 27376475 [TBL] [Abstract][Full Text] [Related]
16. Hi-Plex for Simple, Accurate, and Cost-Effective Amplicon-based Targeted DNA Sequencing. Pope BJ; Hammet F; Nguyen-Dumont T; Park DJ Methods Mol Biol; 2018; 1712():53-70. PubMed ID: 29224068 [TBL] [Abstract][Full Text] [Related]
17. High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array™ System for simplified amplicon library preparation. Moonsamy PV; Williams T; Bonella P; Holcomb CL; Höglund BN; Hillman G; Goodridge D; Turenchalk GS; Blake LA; Daigle DA; Simen BB; Hamilton A; May AP; Erlich HA Tissue Antigens; 2013 Mar; 81(3):141-9. PubMed ID: 23398507 [TBL] [Abstract][Full Text] [Related]
18. High-throughput PCR assay design for targeted resequencing using primerXL. Lefever S; Pattyn F; De Wilde B; Coppieters F; De Keulenaer S; Hellemans J; Vandesompele J BMC Bioinformatics; 2017 Sep; 18(1):400. PubMed ID: 28877663 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of molecular inversion probe versus TruSeq® custom methods for targeted next-generation sequencing. Almomani R; Marchi M; Sopacua M; Lindsey P; Salvi E; Koning B; Santoro S; Magri S; Smeets HJM; Martinelli Boneschi F; Malik RR; Ziegler D; Hoeijmakers JGJ; Bönhof G; Dib-Hajj S; Waxman SG; Merkies ISJ; Lauria G; Faber CG; Gerrits MM; PLoS One; 2020; 15(9):e0238467. PubMed ID: 32877464 [TBL] [Abstract][Full Text] [Related]
20. A programmable method for massively parallel targeted sequencing. Hopmans ES; Natsoulis G; Bell JM; Grimes SM; Sieh W; Ji HP Nucleic Acids Res; 2014 Jun; 42(10):e88. PubMed ID: 24782526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]