These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 28735535)

  • 1. Sodium Diisopropylamide in Tetrahydrofuran: Selectivities, Rates, and Mechanisms of Alkene Isomerizations and Diene Metalations.
    Algera RF; Ma Y; Collum DB
    J Am Chem Soc; 2017 Aug; 139(33):11544-11549. PubMed ID: 28735535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium Diisopropylamide in Tetrahydrofuran: Selectivities, Rates, and Mechanisms of Arene Metalations.
    Algera RF; Ma Y; Collum DB
    J Am Chem Soc; 2017 Oct; 139(42):15197-15204. PubMed ID: 28946744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium Diisopropylamide in N,N-Dimethylethylamine: Reactivity, Selectivity, and Synthetic Utility.
    Ma Y; Algera RF; Collum DB
    J Org Chem; 2016 Nov; 81(22):11312-11315. PubMed ID: 27768310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium Diisopropylamide-Mediated Dehydrohalogenations: Influence of Primary- and Secondary-Shell Solvation.
    Ma Y; Algera RF; Woltornist RA; Collum DB
    J Org Chem; 2019 Sep; 84(17):10860-10869. PubMed ID: 31436099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium Isopropyl(trimethylsilyl)amide: A Stable and Highly Soluble Lithium Diisopropylamide Mimic.
    Ma Y; Lui NM; Keresztes I; Woltornist RA; Collum DB
    J Org Chem; 2022 Nov; 87(21):14223-14229. PubMed ID: 36282953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium Diisopropylamide: Aggregation, Solvation, and Stability.
    Algera RF; Ma Y; Collum DB
    J Am Chem Soc; 2017 Jun; 139(23):7921-7930. PubMed ID: 28557426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of Sodium Diisopropylamide: Liquid-Phase and Solid-Liquid Phase-Transfer Catalysis by
    Ma Y; Woltornist RA; Algera RF; Collum DB
    J Am Chem Soc; 2021 Aug; 143(33):13370-13381. PubMed ID: 34375095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One simple Ir/hydrosilane catalytic system for chemoselective isomerization of 2-substituted allylic ethers.
    Gao W; Zhang X; Xie X; Ding S
    Chem Commun (Camb); 2020 Feb; 56(13):2012-2015. PubMed ID: 31961351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regioselective lithium diisopropylamide-mediated ortholithiation of 1-chloro-3-(trifluoromethyl)benzene: role of autocatalysis, lithium chloride catalysis, and reversibility.
    Hoepker AC; Gupta L; Ma Y; Faggin MF; Collum DB
    J Am Chem Soc; 2011 May; 133(18):7135-51. PubMed ID: 21500823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies of lithium diisopropylamide deaggregation.
    Hoepker AC; Collum DB
    J Org Chem; 2011 Oct; 76(19):7985-93. PubMed ID: 21888365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium Enolates Derived from Pyroglutaminol: Mechanism and Stereoselectivity of an Azaaldol Addition.
    Houghton MJ; Huck CJ; Wright SW; Collum DB
    J Am Chem Soc; 2016 Aug; 138(32):10276-83. PubMed ID: 27500546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoselective oxygen-centered radical cyclizations onto silyl enol ethers.
    Zlotorzynska M; Zhai H; Sammis GM
    Org Lett; 2008 Nov; 10(21):5083-6. PubMed ID: 18855396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olefinic ester and diene ring-closing metathesis using a reduced titanium alkylidene.
    Iyer K; Rainier JD
    J Am Chem Soc; 2007 Oct; 129(42):12604-5. PubMed ID: 17900112
    [No Abstract]   [Full Text] [Related]  

  • 14. Copper-catalyzed intramolecular alkene carboetherification: synthesis of fused-ring and bridged-ring tetrahydrofurans.
    Miller Y; Miao L; Hosseini AS; Chemler SR
    J Am Chem Soc; 2012 Jul; 134(29):12149-56. PubMed ID: 22720755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic interpretation of selective catalytic hydrogenation and isomerization of alkenes and dienes by ligand deactivated Pd nanoparticles.
    Zhu JS; Shon YS
    Nanoscale; 2015 Nov; 7(42):17786-90. PubMed ID: 26455381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemoselective reactions of (E)-1,3-dienes: cobalt-mediated isomerization to (Z)-1,3-dienes and reactions with ethylene.
    Timsina YN; Biswas S; RajanBabu TV
    J Am Chem Soc; 2014 Apr; 136(17):6215-8. PubMed ID: 24712838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,4-addition of lithium diisopropylamide to unsaturated esters: role of rate-limiting deaggregation, autocatalysis, lithium chloride catalysis, and other mixed aggregation effects.
    Ma Y; Hoepker AC; Gupta L; Faggin MF; Collum DB
    J Am Chem Soc; 2010 Nov; 132(44):15610-23. PubMed ID: 20961095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of highly functionalized tri- and tetrasubstituted alkenes via Pd-catalyzed 1,2-hydrovinylation of terminal 1,3-dienes.
    Saini V; O'Dair M; Sigman MS
    J Am Chem Soc; 2015 Jan; 137(2):608-11. PubMed ID: 25555197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoselectivity and regioselectivity in the segment-coupling Prins cyclization.
    Jaber JJ; Mitsui K; Rychnovsky SD
    J Org Chem; 2001 Jun; 66(13):4679-86. PubMed ID: 11421792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organocatalytic enantioselective Michael addition of cyclic hemiacetals to nitroolefins: a facile access to chiral substituted 5- and 6-membered cyclic ethers.
    Zhu Y; Qian P; Yang J; Chen S; Hu Y; Wu P; Wang W; Zhang W; Zhang S
    Org Biomol Chem; 2015 Apr; 13(16):4769-75. PubMed ID: 25806618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.