These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28735862)

  • 1. Transcriptome analysis reveals temperature-regulated antiviral response in turbot Scophthalmus maximus.
    Zhang J; Sun L
    Fish Shellfish Immunol; 2017 Sep; 68():359-367. PubMed ID: 28735862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis reveals potential anti-viral immune pathways of turbot (Scophthalmus maximus) subverted by megalocytivirus RBIV-C1 for immune evasion.
    Xu X; Liu L; Feng J; Li X; Zhang J
    Fish Shellfish Immunol; 2022 Mar; 122():153-161. PubMed ID: 35150827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ORF75 of megalocytivirus RBIV-C1: A global transcription regulator and an effective vaccine candidate.
    Zhang J; Li MF
    Fish Shellfish Immunol; 2015 Aug; 45(2):486-94. PubMed ID: 25982404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and expression study of an IRF4a gene and its two transcript variants in turbot, Scophthalmus maximus.
    Li S; Hu G; Chen Z; Song L; Wang G; Liu D; Liu Q
    Fish Shellfish Immunol; 2018 Jan; 72():389-398. PubMed ID: 29054828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of normalization factors for quantitative real time RT-PCR studies in Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus) under conditions of viral infection.
    Zhang J; Hu YH; Sun BG; Xiao ZZ; Sun L
    Vet Immunol Immunopathol; 2013 Apr; 152(3-4):303-16. PubMed ID: 23332581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and analysis of experimental DNA vaccines against megalocytivirus.
    Zhang M; Hu YH; Xiao ZZ; Sun Y; Sun L
    Fish Shellfish Immunol; 2012 Nov; 33(5):1192-8. PubMed ID: 22986024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Megalocytivirus-induced proteins of turbot (Scophthalmus maximus): identification and antiviral potential.
    Zhang J; Hu YH; Xiao ZZ; Sun L
    J Proteomics; 2013 Oct; 91():430-43. PubMed ID: 23933595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-seq analysis reveals significant transcriptome changes in turbot (Scophthalmus maximus) suffering severe enteromyxosis.
    Robledo D; Ronza P; Harrison PW; Losada AP; Bermúdez R; Pardo BG; Redondo MJ; Sitjà-Bobadilla A; Quiroga MI; Martínez P
    BMC Genomics; 2014 Dec; 15():1149. PubMed ID: 25526753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome analysis reveals seven key immune pathways of Japanese flounder (Paralichthys olivaceus) involved in megalocytivirus infection.
    Wu Q; Ning X; Jiang S; Sun L
    Fish Shellfish Immunol; 2020 Aug; 103():150-158. PubMed ID: 32413472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of MiRNA Transcriptome in Turbot (Scophthalmus maximus L.) Intestine Following Vibrio anguillarum Infection.
    Gao C; Cai X; Fu Q; Yang N; Song L; Su B; Tan F; Liu B; Li C
    Mar Biotechnol (NY); 2019 Aug; 21(4):550-564. PubMed ID: 31111338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P247 and p523: two in vivo-expressed megalocytivirus proteins that induce protective immunity and are essential to viral infection.
    Zhang J; Zhang BC; Sun L
    PLoS One; 2015; 10(3):e0121282. PubMed ID: 25815484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expressed sequence tags (ESTs) from immune tissues of turbot (Scophthalmus maximus) challenged with pathogens.
    Pardo BG; Fernández C; Millán A; Bouza C; Vázquez-López A; Vera M; Alvarez-Dios JA; Calaza M; Gómez-Tato A; Vázquez M; Cabaleiro S; Magariños B; Lemos ML; Leiro JM; Martínez P
    BMC Vet Res; 2008 Sep; 4():37. PubMed ID: 18817567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue Localization of Lymphocystis Disease Virus (LCDV) Receptor-27.8 kDa and Its Expression Kinetics Induced by the Viral Infection in Turbot (Scophthalmus maximus).
    Sheng X; Wu R; Tang X; Xing J; Zhan W
    Int J Mol Sci; 2015 Nov; 16(11):26506-19. PubMed ID: 26556346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and multifunctional characterization of GRIM-19 (gene associated with retinoid-interferon-induced mortality 19) homologue from turbot (Scophthalmus maximus).
    Wang N; Wang X; Yang C; Zhao X; Zhang Y; Wang T; Chen S
    Dev Comp Immunol; 2014 Mar; 43(1):96-105. PubMed ID: 24239557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rock bream iridovirus (RBIV) replication in rock bream (Oplegnathus fasciatus) exposed for different time periods to susceptible water temperatures.
    Jung MH; Nikapitiya C; Vinay TN; Lee J; Jung SJ
    Fish Shellfish Immunol; 2017 Nov; 70():731-735. PubMed ID: 28919266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, characterization and expression analysis of a cold shock domain family member YB-1 in turbot Scophthalmus maximus.
    Wang XL; Zhang YX; Yang CG; Zhang B; Chen SL
    Fish Shellfish Immunol; 2012 Nov; 33(5):1215-21. PubMed ID: 22982328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput sequence analysis of turbot (Scophthalmus maximus) transcriptome using 454-pyrosequencing for the discovery of antiviral immune genes.
    Pereiro P; Balseiro P; Romero A; Dios S; Forn-Cuni G; Fuste B; Planas JV; Beltran S; Novoa B; Figueras A
    PLoS One; 2012; 7(5):e35369. PubMed ID: 22629298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppressor of cytokine signaling 3 (SOCS3) is related to pro-inflammatory cytokine production and triglyceride deposition in turbot (Scophthalmus maximus).
    Tan P; Peng M; Liu D; Guo H; Mai K; Nian R; Macq B; Ai Q
    Fish Shellfish Immunol; 2017 Nov; 70():381-390. PubMed ID: 28882805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first characterization of two type I interferons in turbot (Scophthalmus maximus) reveals their differential role, expression pattern and gene induction.
    Pereiro P; Costa MM; Díaz-Rosales P; Dios S; Figueras A; Novoa B
    Dev Comp Immunol; 2014 Aug; 45(2):233-44. PubMed ID: 24680948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD83 is required for the induction of protective immunity by a DNA vaccine in a teleost model.
    Li MF; Li YX; Sun L
    Dev Comp Immunol; 2015 Jul; 51(1):141-7. PubMed ID: 25800093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.