These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 28736)
1. Inactivation of glutamate dehydrogenase and glutamate synthase from Bacillus megaterium by phenylglyoxal, butane-2,3-dione and pyridoxal 5'-phosphate. Hemmilä IA; Mäntsälä PI Biochem J; 1978 Jul; 173(1):53-8. PubMed ID: 28736 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal. Chollet R Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300 [TBL] [Abstract][Full Text] [Related]
3. Modification of arginyl residues in ferredoxin-NADP+ reductase from spinach leaves. Zanetti G; Gozzer C; Sacchi G; Curti B Biochim Biophys Acta; 1979 May; 568(1):127-34. PubMed ID: 444539 [TBL] [Abstract][Full Text] [Related]
4. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs. Vernon CM; Hsu RY Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923 [TBL] [Abstract][Full Text] [Related]
5. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal. Peters RG; Jones WC; Cromartie TH Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621 [TBL] [Abstract][Full Text] [Related]
6. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: a comparison with aldehyde reductase and aldose reductase. Bohren KM; von Wartburg JP; Wermuth B Biochim Biophys Acta; 1987 Nov; 916(2):185-92. PubMed ID: 3118957 [TBL] [Abstract][Full Text] [Related]
7. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Malebrán LP; Cardemil E Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926 [TBL] [Abstract][Full Text] [Related]
8. D-Serine dehydratase from Escherichia coli. Essential arginine residue at the pyridoxal 5'-phosphate binding site. Kazarinoff MN; Snell EE J Biol Chem; 1976 Oct; 251(20):6179-82. PubMed ID: 789365 [TBL] [Abstract][Full Text] [Related]
9. Reaction of neutral endopeptidase 24.11 (enkephalinase) with arginine reagents. Jackson DG; Hersh LB J Biol Chem; 1986 Jul; 261(19):8649-54. PubMed ID: 3522576 [TBL] [Abstract][Full Text] [Related]
10. Purification and properties of glutamate synthase and glutamate dehydrogenase from Bacillus megaterium. Hemmilä IA; Mäntsälä PI Biochem J; 1978 Jul; 173(1):45-52. PubMed ID: 99144 [TBL] [Abstract][Full Text] [Related]
11. Phenol-sulfotransferase inactivation by 2,3-butanedione and phenylglyoxal: evidence for an active site arginyl residue. Borchardt RT; Schasteen CS Biochem Biophys Res Commun; 1977 Oct; 78(3):1067-73. PubMed ID: 911328 [No Abstract] [Full Text] [Related]
12. Inactivation of adenylate cyclase by phenylglyoxal and other dicarbonyls. Evidence for existence of essential arginyl residues. Franks DJ; Tunnicliff G; Ngo TT Biochim Biophys Acta; 1980 Feb; 611(2):358-62. PubMed ID: 7357013 [TBL] [Abstract][Full Text] [Related]
13. The essential active-site lysines of clostridial glutamate dehydrogenase. A study with pyridoxal-5'-phosphate. Lilley KS; Engel PC Eur J Biochem; 1992 Jul; 207(2):533-40. PubMed ID: 1633808 [TBL] [Abstract][Full Text] [Related]
14. Aminoacetone synthase from goat liver. Involvement of arginine residue at the active site and on the stability of the enzyme. Ray S; Sarkar D; Ray M Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):575-9. PubMed ID: 1903922 [TBL] [Abstract][Full Text] [Related]
15. Arginine modifiers as energy transfer inhibitors in photophosphorylation. Schmid R; Jagendorf AT; Hulkower S Biochim Biophys Acta; 1977 Oct; 462(1):177-86. PubMed ID: 143962 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue. Epperly BR; Dekker EE J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195 [TBL] [Abstract][Full Text] [Related]
17. Modification of the phosphatidylcholine-transfer protein from bovine liver with butanedione and phenylglyoxal. Evidence for one essential arginine residue. Akeroyd R; Lange LG; Westerman J; Wirtz KW Eur J Biochem; 1981 Dec; 121(1):77-81. PubMed ID: 7327172 [TBL] [Abstract][Full Text] [Related]
18. Chemical modification of arginine residues in the lactose repressor. Whitson PA; Matthews KS Biochemistry; 1987 Oct; 26(20):6502-7. PubMed ID: 3322382 [TBL] [Abstract][Full Text] [Related]
19. Ox liver glutamate dehydrogenase. The role of lysine-126 reappraised in the light of studies of inhibition and inactivation by pyridoxal 5'-phosphate. Chen SS; Engel PC Biochem J; 1975 Sep; 149(3):619-26. PubMed ID: 173293 [TBL] [Abstract][Full Text] [Related]
20. Protection of hexaprenyl-diphosphate synthase of Micrococcus luteus B-P 26 against inactivation by sulphydryl reagents and arginine-specific reagents. Yoshida I; Koyama T; Ogura K Biochim Biophys Acta; 1989 Apr; 995(2):138-43. PubMed ID: 2539196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]