BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28736)

  • 1. Inactivation of glutamate dehydrogenase and glutamate synthase from Bacillus megaterium by phenylglyoxal, butane-2,3-dione and pyridoxal 5'-phosphate.
    Hemmilä IA; Mäntsälä PI
    Biochem J; 1978 Jul; 173(1):53-8. PubMed ID: 28736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of crystalline tobacco ribulosebisphosphate carboxylase by modification of arginine residues with 2,3-butanedione and phenylglyoxal.
    Chollet R
    Biochim Biophys Acta; 1981 Apr; 658(2):177-90. PubMed ID: 7248300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of arginyl residues in ferredoxin-NADP+ reductase from spinach leaves.
    Zanetti G; Gozzer C; Sacchi G; Curti B
    Biochim Biophys Acta; 1979 May; 568(1):127-34. PubMed ID: 444539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pigeon liver malic enzyme: involvement of an arginyl residue at the binding site for malate and its analogs.
    Vernon CM; Hsu RY
    Arch Biochem Biophys; 1983 Aug; 225(1):296-305. PubMed ID: 6614923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of L-lactate monooxygenase with 2,3-butanedione and phenylglyoxal.
    Peters RG; Jones WC; Cromartie TH
    Biochemistry; 1981 Apr; 20(9):2564-71. PubMed ID: 7236621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: a comparison with aldehyde reductase and aldose reductase.
    Bohren KM; von Wartburg JP; Wermuth B
    Biochim Biophys Acta; 1987 Nov; 916(2):185-92. PubMed ID: 3118957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae.
    Malebrán LP; Cardemil E
    Biochim Biophys Acta; 1987 Oct; 915(3):385-92. PubMed ID: 3307926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-Serine dehydratase from Escherichia coli. Essential arginine residue at the pyridoxal 5'-phosphate binding site.
    Kazarinoff MN; Snell EE
    J Biol Chem; 1976 Oct; 251(20):6179-82. PubMed ID: 789365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of neutral endopeptidase 24.11 (enkephalinase) with arginine reagents.
    Jackson DG; Hersh LB
    J Biol Chem; 1986 Jul; 261(19):8649-54. PubMed ID: 3522576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of glutamate synthase and glutamate dehydrogenase from Bacillus megaterium.
    Hemmilä IA; Mäntsälä PI
    Biochem J; 1978 Jul; 173(1):45-52. PubMed ID: 99144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenol-sulfotransferase inactivation by 2,3-butanedione and phenylglyoxal: evidence for an active site arginyl residue.
    Borchardt RT; Schasteen CS
    Biochem Biophys Res Commun; 1977 Oct; 78(3):1067-73. PubMed ID: 911328
    [No Abstract]   [Full Text] [Related]  

  • 12. Inactivation of adenylate cyclase by phenylglyoxal and other dicarbonyls. Evidence for existence of essential arginyl residues.
    Franks DJ; Tunnicliff G; Ngo TT
    Biochim Biophys Acta; 1980 Feb; 611(2):358-62. PubMed ID: 7357013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The essential active-site lysines of clostridial glutamate dehydrogenase. A study with pyridoxal-5'-phosphate.
    Lilley KS; Engel PC
    Eur J Biochem; 1992 Jul; 207(2):533-40. PubMed ID: 1633808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminoacetone synthase from goat liver. Involvement of arginine residue at the active site and on the stability of the enzyme.
    Ray S; Sarkar D; Ray M
    Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):575-9. PubMed ID: 1903922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine modifiers as energy transfer inhibitors in photophosphorylation.
    Schmid R; Jagendorf AT; Hulkower S
    Biochim Biophys Acta; 1977 Oct; 462(1):177-86. PubMed ID: 143962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue.
    Epperly BR; Dekker EE
    J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modification of the phosphatidylcholine-transfer protein from bovine liver with butanedione and phenylglyoxal. Evidence for one essential arginine residue.
    Akeroyd R; Lange LG; Westerman J; Wirtz KW
    Eur J Biochem; 1981 Dec; 121(1):77-81. PubMed ID: 7327172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of arginine residues in the lactose repressor.
    Whitson PA; Matthews KS
    Biochemistry; 1987 Oct; 26(20):6502-7. PubMed ID: 3322382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ox liver glutamate dehydrogenase. The role of lysine-126 reappraised in the light of studies of inhibition and inactivation by pyridoxal 5'-phosphate.
    Chen SS; Engel PC
    Biochem J; 1975 Sep; 149(3):619-26. PubMed ID: 173293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protection of hexaprenyl-diphosphate synthase of Micrococcus luteus B-P 26 against inactivation by sulphydryl reagents and arginine-specific reagents.
    Yoshida I; Koyama T; Ogura K
    Biochim Biophys Acta; 1989 Apr; 995(2):138-43. PubMed ID: 2539196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.