These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 28736301)
61. Cadherin Is a Binding Protein but Not a Functional Receptor of Bacillus thuringiensis Cry2Ab in Helicoverpa armigera. Naing ZL; Soe ET; Zhang C; Niu L; Tang J; Ding Z; Yu S; Lu J; Fang F; Liang G Appl Environ Microbiol; 2023 Jul; 89(7):e0062523. PubMed ID: 37378519 [TBL] [Abstract][Full Text] [Related]
62. Aminopeptidase N1 is involved in Bacillus thuringiensis Cry1Ac toxicity in the beet armyworm, Spodoptera exigua. Qiu L; Cui S; Liu L; Zhang B; Ma W; Wang X; Lei C; Chen L Sci Rep; 2017 Mar; 7():45007. PubMed ID: 28327568 [TBL] [Abstract][Full Text] [Related]
63. Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin. Da Silva IHS; Goméz I; Sánchez J; Martínez de Castro DL; Valicente FH; Soberón M; Polanczyk RA; Bravo A PLoS One; 2018; 13(12):e0207789. PubMed ID: 30521540 [TBL] [Abstract][Full Text] [Related]
64. Recombinant Expression of ABCC2 Variants Confirms the Importance of Mutations in Extracellular Loop 4 for Cry1F Resistance in Fall Armyworm. Franz L; Raming K; Nauen R Toxins (Basel); 2022 Feb; 14(2):. PubMed ID: 35202184 [TBL] [Abstract][Full Text] [Related]
65. Expression of recombinant and mosaic Cry1Ac receptors from Helicoverpa armigera and their influences on the cytotoxicity of activated Cry1Ac to Spodoptera litura Sl-HP cells. Xu P; Islam M; Xiao Y; He F; Li Y; Peng J; Hong H; Liu C; Liu K Cytotechnology; 2016 May; 68(3):481-96. PubMed ID: 25412589 [TBL] [Abstract][Full Text] [Related]
66. Bacillus thuringiensis cry toxin triggers autophagy activity that may enhance cell death. Yang Y; Huang X; Yuan W; Xiang Y; Guo X; Wei W; Soberón M; Bravo A; Liu K Pestic Biochem Physiol; 2021 Jan; 171():104728. PubMed ID: 33357550 [TBL] [Abstract][Full Text] [Related]
67. Knockout of three aminopeptidase N genes does not affect susceptibility of Helicoverpa armigera larvae to Bacillus thuringiensis Cry1A and Cry2A toxins. Wang J; Zuo YY; Li LL; Wang H; Liu SY; Yang YH; Wu YD Insect Sci; 2020 Jun; 27(3):440-448. PubMed ID: 30767423 [TBL] [Abstract][Full Text] [Related]
68. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin. Tanaka S; Endo H; Adegawa S; Iizuka A; Imamura K; Kikuta S; Sato R Insect Biochem Mol Biol; 2017 Dec; 91():44-54. PubMed ID: 29128667 [TBL] [Abstract][Full Text] [Related]
69. RNAi-based knockdown of candidate gut receptor genes altered the susceptibility of Dutta TK; Santhoshkumar K; Veeresh A; Waghmare C; Mathur C; Sreevathsa R PeerJ; 2023; 11():e14716. PubMed ID: 36710863 [TBL] [Abstract][Full Text] [Related]
70. Disruption of a cadherin gene associated with resistance to Cry1Ac {delta}-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Xu X; Yu L; Wu Y Appl Environ Microbiol; 2005 Feb; 71(2):948-54. PubMed ID: 15691952 [TBL] [Abstract][Full Text] [Related]
71. The domain II loops of Bacillus thuringiensis Cry1Aa form an overlapping interaction site for two Bombyx mori larvae functional receptors, ABC transporter C2 and cadherin-like receptor. Adegawa S; Nakama Y; Endo H; Shinkawa N; Kikuta S; Sato R Biochim Biophys Acta Proteins Proteom; 2017 Feb; 1865(2):220-231. PubMed ID: 27888075 [TBL] [Abstract][Full Text] [Related]
72. Binding of Bacillus thuringiensis toxin Cry1Ac to multiple sites of cadherin in pink bollworm. Fabrick JA; Tabashnik BE Insect Biochem Mol Biol; 2007 Feb; 37(2):97-106. PubMed ID: 17244539 [TBL] [Abstract][Full Text] [Related]
73. Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac. Paramasiva I; Shouche Y; Kulkarni GJ; Krishnayya PV; Akbar SM; Sharma HC Arch Insect Biochem Physiol; 2014 Dec; 87(4):201-13. PubMed ID: 25195523 [TBL] [Abstract][Full Text] [Related]
74. Resistance of Helicoverpa armigera to Cry1Ac toxin from Bacillus thuringiensis is due to improper processing of the protoxin. Rajagopal R; Arora N; Sivakumar S; Rao NG; Nimbalkar SA; Bhatnagar RK Biochem J; 2009 Apr; 419(2):309-16. PubMed ID: 19146482 [TBL] [Abstract][Full Text] [Related]
75. SfABCC2 transporter extracellular loops 2 and 4 are responsible for the Cry1Fa insecticidal specificity against Spodoptera frugiperda. Liu Y; Jin M; Wang L; Wang H; Xia Z; Yang Y; Bravo A; Soberón M; Xiao Y; Liu K Insect Biochem Mol Biol; 2021 Aug; 135():103608. PubMed ID: 34119653 [TBL] [Abstract][Full Text] [Related]
76. Alkaline phosphatase 2 is a functional receptor of Cry1Ac but not Cry2Ab in Helicoverpa zea. Wei J; Zhang M; Liang G; Li X Insect Mol Biol; 2019 Jun; 28(3):372-379. PubMed ID: 30474197 [TBL] [Abstract][Full Text] [Related]
77. Homologs to Cry toxin receptor genes in a de novo transcriptome and their altered expression in resistant Spodoptera litura larvae. Gong L; Wang H; Qi J; Han L; Hu M; Jurat-Fuentes JL J Invertebr Pathol; 2015 Jul; 129():1-6. PubMed ID: 25981133 [TBL] [Abstract][Full Text] [Related]
78. Endogenous serpin reduces toxicity of Bacillus thuringiensis Cry1Ac against Helicoverpa armigera (Hübner). Zhang C; Wei J; Naing ZL; Soe ET; Liang G Pestic Biochem Physiol; 2021 Jun; 175():104837. PubMed ID: 33993962 [TBL] [Abstract][Full Text] [Related]
79. Development and mechanisms of resistance to Bacillus thuringiensis endotoxin Cry1Ac in the American bollworm, Helicoverpa armigera (Hübner). Chandrashekar K; Gujar GT Indian J Exp Biol; 2004 Feb; 42(2):164-73. PubMed ID: 15282949 [TBL] [Abstract][Full Text] [Related]
80. MAPK-mediated transcription factor GATAd contributes to Cry1Ac resistance in diamondback moth by reducing PxmALP expression. Guo L; Cheng Z; Qin J; Sun D; Wang S; Wu Q; Crickmore N; Zhou X; Bravo A; Soberón M; Guo Z; Zhang Y PLoS Genet; 2022 Feb; 18(2):e1010037. PubMed ID: 35113858 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]