These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28736514)

  • 1. Design and Validation of Exoskeleton Actuated by Soft Modules toward Neurorehabilitation-Vision-Based Control for Precise Reaching Motion of Upper Limb.
    Oguntosin VW; Mori Y; Kim H; Nasuto SJ; Kawamura S; Hayashi Y
    Front Neurosci; 2017; 11():352. PubMed ID: 28736514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration, Sensing, and Control of a Modular Soft-Rigid Pneumatic Lower Limb Exoskeleton.
    Wang J; Fei Y; Chen W
    Soft Robot; 2020 Apr; 7(2):140-154. PubMed ID: 31603736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of a 6-DOF upper limb rehabilitation exoskeleton with parallel actuated joints.
    Chen Y; Li G; Zhu Y; Zhao J; Cai H
    Biomed Mater Eng; 2014; 24(6):2527-35. PubMed ID: 25226954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire Actuators.
    Copaci D; Cano E; Moreno L; Blanco D
    Appl Bionics Biomech; 2017; 2017():1605101. PubMed ID: 29104424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton.
    Di Natali C; Sadeghi A; Mondini A; Bottenberg E; Hartigan B; De Eyto A; O'Sullivan L; Rocon E; Stadler K; Mazzolai B; Caldwell DG; Ortiz J
    Front Neurorobot; 2020; 14():31. PubMed ID: 32714175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Preliminary Feasibility Study of a Soft Robotic Glove for Hand Function Assistance in Stroke Survivors.
    Yap HK; Lim JH; Nasrallah F; Yeow CH
    Front Neurosci; 2017; 11():547. PubMed ID: 29062267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully Wearable Actuated Soft Exoskeleton for Grasping Assistance in Everyday Activities.
    Bützer T; Lambercy O; Arata J; Gassert R
    Soft Robot; 2021 Apr; 8(2):128-143. PubMed ID: 32552422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity.
    Ismail R; Ariyanto M; Setiawan JD; Hidayat T; Paryanto ; Nuswantara LK
    HardwareX; 2024 Jun; 18():e00537. PubMed ID: 38784668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wearable Soft Robotic Exoskeleton for Hip Flexion Rehabilitation.
    Miller-Jackson TM; Natividad RF; Lim DYL; Hernandez-Barraza L; Ambrose JW; Yeow RC
    Front Robot AI; 2022; 9():835237. PubMed ID: 35572371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A passively safe cable driven upper limb rehabilitation exoskeleton.
    Chen Y; Fan J; Zhu Y; Zhao J; Cai H
    Technol Health Care; 2015; 23 Suppl 2():S197-202. PubMed ID: 26410484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preliminary Assessment of a Compliant Gait Exoskeleton.
    Cestari M; Sanz-Merodio D; Garcia E
    Soft Robot; 2017 Jun; 4(2):135-146. PubMed ID: 29182092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning.
    Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W
    Front Neurorobot; 2019; 13():99. PubMed ID: 31849635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation.
    Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T
    Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Attention-Controlled Hand Exoskeleton for the Rehabilitation of Finger Extension and Flexion Using a Rigid-Soft Combined Mechanism.
    Li M; He B; Liang Z; Zhao CG; Chen J; Zhuo Y; Xu G; Xie J; Althoefer K
    Front Neurorobot; 2019; 13():34. PubMed ID: 31231203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of an upper arm exoskeleton for gravity balancing and minimization of transmitted forces.
    Dubey VN; Agrawal SK
    Proc Inst Mech Eng H; 2011 Nov; 225(11):1025-35. PubMed ID: 22292201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and control of system for elbow rehabilitation: Preliminary findings.
    Mikołajczyk T; Kłodowski A; Mikołajewska E; Walkowiak P; Berjano P; Villafañe JH; Aggogeri F; Borboni A; Fausti D; Petrogalli G
    Adv Clin Exp Med; 2018 Dec; 27(12):1661-1669. PubMed ID: 30311751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation.
    Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.