These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 28736698)
1. Impact of automated ICA-based denoising of fMRI data in acute stroke patients. Carone D; Licenik R; Suri S; Griffanti L; Filippini N; Kennedy J Neuroimage Clin; 2017; 16():23-31. PubMed ID: 28736698 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990 [TBL] [Abstract][Full Text] [Related]
3. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. Pruim RHR; Mennes M; van Rooij D; Llera A; Buitelaar JK; Beckmann CF Neuroimage; 2015 May; 112():267-277. PubMed ID: 25770991 [TBL] [Abstract][Full Text] [Related]
5. Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. Salimi-Khorshidi G; Douaud G; Beckmann CF; Glasser MF; Griffanti L; Smith SM Neuroimage; 2014 Apr; 90():449-68. PubMed ID: 24389422 [TBL] [Abstract][Full Text] [Related]
6. The optimized combination of aCompCor and ICA-AROMA to reduce motion and physiologic noise in task fMRI data. Van Schuerbeek P; De Wandel L; Baeken C Biomed Phys Eng Express; 2022 Jul; 8(5):. PubMed ID: 35378526 [TBL] [Abstract][Full Text] [Related]
8. Comparing the efficacy of data-driven denoising methods for a multi-echo fMRI acquisition at 7T. Beckers AB; Drenthen GS; Jansen JFA; Backes WH; Poser BA; Keszthelyi D Neuroimage; 2023 Oct; 280():120361. PubMed ID: 37669723 [TBL] [Abstract][Full Text] [Related]
9. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. Griffanti L; Salimi-Khorshidi G; Beckmann CF; Auerbach EJ; Douaud G; Sexton CE; Zsoldos E; Ebmeier KP; Filippini N; Mackay CE; Moeller S; Xu J; Yacoub E; Baselli G; Ugurbil K; Miller KL; Smith SM Neuroimage; 2014 Jul; 95():232-47. PubMed ID: 24657355 [TBL] [Abstract][Full Text] [Related]
10. Automatic independent component labeling for artifact removal in fMRI. Tohka J; Foerde K; Aron AR; Tom SM; Toga AW; Poldrack RA Neuroimage; 2008 Feb; 39(3):1227-45. PubMed ID: 18042495 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the efficacy of multi-echo ICA denoising on model-based fMRI. Steel A; Garcia BD; Silson EH; Robertson CE Neuroimage; 2022 Dec; 264():119723. PubMed ID: 36328274 [TBL] [Abstract][Full Text] [Related]
12. Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Kundu P; Brenowitz ND; Voon V; Worbe Y; Vértes PE; Inati SJ; Saad ZS; Bandettini PA; Bullmore ET Proc Natl Acad Sci U S A; 2013 Oct; 110(40):16187-92. PubMed ID: 24038744 [TBL] [Abstract][Full Text] [Related]
13. Improved resting state functional connectivity sensitivity and reproducibility using a multiband multi-echo acquisition. Cohen AD; Yang B; Fernandez B; Banerjee S; Wang Y Neuroimage; 2021 Jan; 225():117461. PubMed ID: 33069864 [TBL] [Abstract][Full Text] [Related]
14. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. Glasser MF; Coalson TS; Bijsterbosch JD; Harrison SJ; Harms MP; Anticevic A; Van Essen DC; Smith SM Neuroimage; 2018 Nov; 181():692-717. PubMed ID: 29753843 [TBL] [Abstract][Full Text] [Related]
15. Alternative labeling tool: a minimal algorithm for denoising single-subject resting-state fMRI data with ICA-MELODIC. Zhukovsky P; Coughlan G; Dickie EW; Hawco C; Voineskos AN Brain Imaging Behav; 2022 Aug; 16(4):1823-1831. PubMed ID: 35348997 [TBL] [Abstract][Full Text] [Related]
16. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Parkes L; Fulcher B; Yücel M; Fornito A Neuroimage; 2018 May; 171():415-436. PubMed ID: 29278773 [TBL] [Abstract][Full Text] [Related]
17. A method to mitigate spatio-temporally varying task-correlated motion artifacts from overt-speech fMRI paradigms in aphasia. Krishnamurthy V; Krishnamurthy LC; Meadows ML; Gale MK; Ji B; Gopinath K; Crosson B Hum Brain Mapp; 2021 Mar; 42(4):1116-1129. PubMed ID: 33210749 [TBL] [Abstract][Full Text] [Related]
18. Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions. Dipasquale O; Sethi A; Laganà MM; Baglio F; Baselli G; Kundu P; Harrison NA; Cercignani M PLoS One; 2017; 12(3):e0173289. PubMed ID: 28323821 [TBL] [Abstract][Full Text] [Related]
19. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data. Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, rapid event-related designs, and cardiac-gated fMRI. Gonzalez-Castillo J; Panwar P; Buchanan LC; Caballero-Gaudes C; Handwerker DA; Jangraw DC; Zachariou V; Inati S; Roopchansingh V; Derbyshire JA; Bandettini PA Neuroimage; 2016 Nov; 141():452-468. PubMed ID: 27475290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]