These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2873674)

  • 1. Toxin-types of Clostridium perfringens strains isolated from sheep, cattle and paddock soils in Nigeria.
    Itodo AE; Adesiyun AA; Adekeye JO; Umoh JU
    Vet Microbiol; 1986 Jun; 12(1):93-6. PubMed ID: 2873674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differentiation of proteinase (minor toxin lambda) in Clostridium perfringens strains from sheep and goats in Iran.
    Ghazi F; Younan M; Ardehalli M; Müller W
    Dtsch Tierarztl Wochenschr; 1997 Oct; 104(10):443-5. PubMed ID: 9394541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymerase chain reaction test for differentiation of five toxin types of Clostridium perfringens.
    Yamagishi T; Sugitani K; Tanishima K; Nakamura S
    Microbiol Immunol; 1997; 41(4):295-9. PubMed ID: 9159402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quality assurance of C. perfringens epsilon toxoid vaccines--ELISA versus mouse neutralisation test.
    Rosskopf-Streicher U; Volkers P; Noeske K; Werner E
    ALTEX; 2004; 21 Suppl 3():65-9. PubMed ID: 15057410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxinotyping of Clostridium perfringens fecal isolates of reintroduced Père David's deer (Elaphurus davidianus) in China.
    Qiu H; Chen F; Leng X; Fei R; Wang L
    J Wildl Dis; 2014 Oct; 50(4):942-5. PubMed ID: 25050802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of beta2 and major toxin genes by PCR in Clostridium perfringens field isolates of domestic animals suffering from enteritis or enterotoxaemia.
    Sting R
    Berl Munch Tierarztl Wochenschr; 2009; 122(9-10):341-7. PubMed ID: 19863004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of Clostridium perfringens toxin-genotypes from dairy farms.
    Fohler S; Klein G; Hoedemaker M; Scheu T; Seyboldt C; Campe A; Jensen KC; Abdulmawjood A
    BMC Microbiol; 2016 Aug; 16(1):199. PubMed ID: 27577792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distribution and frequency of Clostridium perfringens toxinotypes in healthy sheep in Benin, West Africa.
    Aschfalk A; Younan M; Drochner W; Müller W
    Trop Anim Health Prod; 2002 Jul; 34(4):289-93. PubMed ID: 12166330
    [No Abstract]   [Full Text] [Related]  

  • 9. Frequency of Clostridium perfringens types in Jordanian sheep.
    Younan M; Both H; Müller W
    Zentralbl Bakteriol; 1994 Aug; 281(2):240-7. PubMed ID: 7858351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clostridium perfringens in animal disease: a review of current knowledge.
    Niilo L
    Can Vet J; 1980 May; 21(5):141-8. PubMed ID: 6253040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of Clostridium perfringens from apparently healthy animals of the Shandong province of China.
    Chai T; Wang L; Wang H; Duan H; Müller W; Zucker BA
    Dtsch Tierarztl Wochenschr; 2007 Oct; 114(10):394-6. PubMed ID: 17970339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time multiplex PCR assay for rapid detection and toxintyping of Clostridium perfringens toxin producing strains in feces of dairy cattle.
    Gurjar AA; Hegde NV; Love BC; Jayarao BM
    Mol Cell Probes; 2008 Apr; 22(2):90-5. PubMed ID: 17890052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridization of 2,659 Clostridium perfringens isolates with gene probes for seven toxins (alpha, beta, epsilon, iota, theta, mu, and enterotoxin) and for sialidase.
    Daube G; Simon P; Limbourg B; Manteca C; Mainil J; Kaeckenbeeck A
    Am J Vet Res; 1996 Apr; 57(4):496-501. PubMed ID: 8712513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of bovine faeces for the isolation and identification of Clostridium species.
    Princewell TJ; Agba MI
    J Appl Bacteriol; 1982 Feb; 52(1):97-102. PubMed ID: 6279555
    [No Abstract]   [Full Text] [Related]  

  • 15. A survey of the alimentary tract of cattle for Clostridium perfringens.
    Vance HN
    Can J Comp Med Vet Sci; 1967 Oct; 31(10):260-4. PubMed ID: 4292900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxin types of Clostridium perfringens isolated from free-ranging, semi-domesticated reindeer in Norway.
    Aschfalk A; Valentin-Weigand P; Müller W; Goethe R
    Vet Rec; 2002 Aug; 151(7):210-3. PubMed ID: 12211393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the spore-forming Bacillus cereus sensu lato group and Clostridium perfringens bacteria isolated from the Australian dairy farm environment.
    Dréan P; McAuley CM; Moore SC; Fegan N; Fox EM
    BMC Microbiol; 2015 Feb; 15():38. PubMed ID: 25881096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations on airborne microorganisms in animal stables. 2. Report: further characterization of airborne Clostridium perfringens.
    Draz A; Chai T; Zucker BA
    Berl Munch Tierarztl Wochenschr; 1999 Apr; 112(4):124-6. PubMed ID: 10337053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variation among Clostridium perfringens isolated from food and faecal specimens in Lagos.
    Chukwu EE; Nwaokorie FO; Coker AO; Avila-Campos MJ; Ogunsola FT
    Microb Pathog; 2017 Oct; 111():232-237. PubMed ID: 28867621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal feeds as likely vehicles of clostridial infections in livestock.
    Princewill TJ; Agba MI; Jemitola SO
    Microbios; 1985; 42(169-170):155-62. PubMed ID: 2863738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.