These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 28736985)
1. Conducting Polymers Crosslinked with Sulfur as Cathode Materials for High-Rate, Ultralong-Life Lithium-Sulfur Batteries. Zeng S; Li L; Xie L; Zhao D; Wang N; Chen S ChemSusChem; 2017 Sep; 10(17):3378-3386. PubMed ID: 28736985 [TBL] [Abstract][Full Text] [Related]
2. Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries. Gomez I; Leonet O; Blazquez JA; Mecerreyes D ChemSusChem; 2016 Dec; 9(24):3419-3425. PubMed ID: 27910220 [TBL] [Abstract][Full Text] [Related]
3. Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Chen H; Dong W; Ge J; Wang C; Wu X; Lu W; Chen L Sci Rep; 2013; 3():1910. PubMed ID: 23714786 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical sulfur-based cathode materials with long cycle life for rechargeable lithium batteries. Wang J; Yin L; Jia H; Yu H; He Y; Yang J; Monroe CW ChemSusChem; 2014 Feb; 7(2):563-9. PubMed ID: 24155121 [TBL] [Abstract][Full Text] [Related]
5. Bottom-Up Construction of Porous Organic Frameworks with Built-In TEMPO as a Cathode for Lithium-Sulfur Batteries. Zhou B; Hu X; Zeng G; Li S; Wen Z; Chen L ChemSusChem; 2017 Jul; 10(14):2955-2961. PubMed ID: 28557296 [TBL] [Abstract][Full Text] [Related]
6. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries. Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469 [TBL] [Abstract][Full Text] [Related]
7. Covalent bond glued sulfur nanosheet-based cathode integration for long-cycle-life Li-S batteries. Wang L; Dong Z; Wang D; Zhang F; Jin J Nano Lett; 2013; 13(12):6244-50. PubMed ID: 24205852 [TBL] [Abstract][Full Text] [Related]
8. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications. Zhang B; Xiao M; Wang S; Han D; Song S; Chen G; Meng Y ACS Appl Mater Interfaces; 2014 Aug; 6(15):13174-82. PubMed ID: 25025228 [TBL] [Abstract][Full Text] [Related]
9. MnO Dong W; Meng L; Hong X; Liu S; Shen D; Xia Y; Yang S Molecules; 2020 Apr; 25(8):. PubMed ID: 32340399 [TBL] [Abstract][Full Text] [Related]
10. Conducting Polymer Coated Graphene Oxide Electrode for Rechargeable Lithium-Sulfur Batteries. Lee HY; Jung Y; Kim S J Nanosci Nanotechnol; 2016 Mar; 16(3):2692-5. PubMed ID: 27455691 [TBL] [Abstract][Full Text] [Related]
11. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes. Oh SJ; Lee JK; Yoon WY ChemSusChem; 2014 Sep; 7(9):2562-6. PubMed ID: 25066183 [TBL] [Abstract][Full Text] [Related]
12. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Li W; Zhang Q; Zheng G; Seh ZW; Yao H; Cui Y Nano Lett; 2013; 13(11):5534-40. PubMed ID: 24127640 [TBL] [Abstract][Full Text] [Related]
13. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface. Kim HM; Hwang JY; Manthiram A; Sun YK ACS Appl Mater Interfaces; 2016 Jan; 8(1):983-7. PubMed ID: 26686268 [TBL] [Abstract][Full Text] [Related]
14. Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium-Sulfur Batteries. Hu W; Hirota Y; Zhu Y; Yoshida N; Miyamoto M; Zheng T; Nishiyama N ChemSusChem; 2017 Sep; 10(18):3557-3564. PubMed ID: 28707784 [TBL] [Abstract][Full Text] [Related]
15. New Redox Polymers that Exhibit Reversible Cleavage of Sulfur Bonds as Cathode Materials. Baloch M; Ben Youcef H; Li C; Garcia-Calvo O; Rodriguez LM; Shanmukaraj D; Rojo T; Armand M ChemSusChem; 2016 Nov; 9(22):3206-3212. PubMed ID: 27796086 [TBL] [Abstract][Full Text] [Related]
16. Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries. Jin L; Huang X; Zeng G; Wu H; Morbidelli M Sci Rep; 2016 Sep; 6():32800. PubMed ID: 27600885 [TBL] [Abstract][Full Text] [Related]
17. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. Zhou G; Yin LC; Wang DW; Li L; Pei S; Gentle IR; Li F; Cheng HM ACS Nano; 2013 Jun; 7(6):5367-75. PubMed ID: 23672616 [TBL] [Abstract][Full Text] [Related]
18. A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries. Sun T; Li ZJ; Wang HG; Bao D; Meng FL; Zhang XB Angew Chem Int Ed Engl; 2016 Aug; 55(36):10662-6. PubMed ID: 27485314 [TBL] [Abstract][Full Text] [Related]
19. Towards Stable Lithium-Sulfur Batteries with a Low Self-Discharge Rate: Ion Diffusion Modulation and Anode Protection. Xu WT; Peng HJ; Huang JQ; Zhao CZ; Cheng XB; Zhang Q ChemSusChem; 2015 Sep; 8(17):2892-901. PubMed ID: 26079671 [TBL] [Abstract][Full Text] [Related]
20. Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries. Chen T; Cheng B; Zhu G; Chen R; Hu Y; Ma L; Lv H; Wang Y; Liang J; Tie Z; Jin Z; Liu J Nano Lett; 2017 Jan; 17(1):437-444. PubMed ID: 28073275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]