These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 28737162)

  • 1. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds.
    Singh YP; Adhikary M; Bhardwaj N; Bhunia BK; Mandal BB
    Biomed Mater; 2017 Jul; 12(4):045012. PubMed ID: 28737162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential of Agarose/Silk Fibroin Blended Hydrogel for in Vitro Cartilage Tissue Engineering.
    Singh YP; Bhardwaj N; Mandal BB
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21236-49. PubMed ID: 27459679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and evaluation of non-mulberry silk fibroin fiber reinforced chitosan based porous composite scaffold for cartilage tissue engineering.
    Singh BN; Pramanik K
    Tissue Cell; 2018 Dec; 55():83-90. PubMed ID: 30503064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic, Osteoconductive Non-mulberry Silk Fiber Reinforced Tricomposite Scaffolds for Bone Tissue Engineering.
    Gupta P; Adhikary M; M JC; Kumar M; Bhardwaj N; Mandal BB
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30797-30810. PubMed ID: 27783501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-mulberry silk fiber-based scaffolds reinforced by PLLA porous microspheres for auricular cartilage: An in vitro study.
    Yang Y; Yao X; Li X; Guo C; Li C; Liu L; Zhou Z
    Int J Biol Macromol; 2021 Jul; 182():1704-1712. PubMed ID: 34052269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs.
    Janani G; Nandi SK; Mandal BB
    Acta Biomater; 2018 Feb; 67():167-182. PubMed ID: 29223705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers.
    Mobini S; Taghizadeh-Jahed M; Khanmohammadi M; Moshiri A; Naderi MM; Heidari-Vala H; Ashrafi Helan J; Khanjani S; Springer A; Akhondi MM; Kazemnejad S
    J Biomater Appl; 2016 Jan; 30(6):793-809. PubMed ID: 26475850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends.
    Bhardwaj N; Kundu SC
    Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of visco-elastic silk-chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering.
    Chameettachal S; Murab S; Vaid R; Midha S; Ghosh S
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1212-1229. PubMed ID: 25846347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteochondral tissue engineering in vivo: a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms.
    Saha S; Kundu B; Kirkham J; Wood D; Kundu SC; Yang XB
    PLoS One; 2013; 8(11):e80004. PubMed ID: 24260335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the in vitro and in vivo degradations of silk fibroin scaffolds from mulberry and nonmulberry silkworms.
    You R; Xu Y; Liu Y; Li X; Li M
    Biomed Mater; 2014 Dec; 10(1):015003. PubMed ID: 25532470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro study of cartilage tissue engineering using human adipose-derived stem cells induced by platelet-rich plasma and cultured on silk fibroin scaffold.
    Rosadi I; Karina K; Rosliana I; Sobariah S; Afini I; Widyastuti T; Barlian A
    Stem Cell Res Ther; 2019 Dec; 10(1):369. PubMed ID: 31801639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.
    Luo Z; Jiang L; Xu Y; Li H; Xu W; Wu S; Wang Y; Tang Z; Lv Y; Yang L
    Biomaterials; 2015 Jun; 52():463-75. PubMed ID: 25818452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking Form and Function of Native Small Diameter Vascular Conduits Using Mulberry and Non-mulberry Patterned Silk Films.
    Gupta P; Kumar M; Bhardwaj N; Kumar JP; Krishnamurthy CS; Nandi SK; Mandal BB
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):15874-88. PubMed ID: 27269821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D.
    Bäcker A; Erhardt O; Wietbrock L; Schel N; Göppert B; Dirschka M; Abaffy P; Sollich T; Cecilia A; Gruhl FJ
    Biopolymers; 2017 Feb; 107(2):70-79. PubMed ID: 27696348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications.
    Bhardwaj N; Rajkhowa R; Wang X; Devi D
    Int J Biol Macromol; 2015 Nov; 81():31-40. PubMed ID: 26226458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair.
    Yodmuang S; McNamara SL; Nover AB; Mandal BB; Agarwal M; Kelly TA; Chao PH; Hung C; Kaplan DL; Vunjak-Novakovic G
    Acta Biomater; 2015 Jan; 11():27-36. PubMed ID: 25281788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.