These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28737389)

  • 1. Glycosyl Cations versus Allylic Cations in Spontaneous and Enzymatic Hydrolysis.
    Danby PM; Withers SG
    J Am Chem Soc; 2017 Aug; 139(31):10629-10632. PubMed ID: 28737389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed dissection of a new mechanism for glycoside cleavage: alpha-1,4-glucan lyase.
    Lee SS; Yu S; Withers SG
    Biochemistry; 2003 Nov; 42(44):13081-90. PubMed ID: 14596624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Aromatic Stacking on Glycoside Reactivity: Balancing CH/π and Cation/π Interactions for the Stabilization of Glycosyl-Oxocarbenium Ions.
    Montalvillo-Jiménez L; Santana AG; Corzana F; Jiménez-Osés G; Jiménez-Barbero J; Gómez AM; Asensio JL
    J Am Chem Soc; 2019 Aug; 141(34):13372-13384. PubMed ID: 31390207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the transition states of four glucoside hydrolyses with 13C kinetic isotope effects measured at natural abundance by NMR spectroscopy.
    Lee JK; Bain AD; Berti PJ
    J Am Chem Soc; 2004 Mar; 126(12):3769-76. PubMed ID: 15038730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvent and α-secondary kinetic isotope effects on β-glucosidase.
    Xie M; Byers LD
    Biochim Biophys Acta; 2015 Nov; 1854(11):1776-81. PubMed ID: 25770682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic isotope effect study on the hydrolysis reactions of methyl xylopyranosides and methyl 5-thioxylopyranosides: oxygen versus sulfur stabilization of carbenium ions.
    Indurugalla D; Bennet AJ
    J Am Chem Soc; 2001 Nov; 123(44):10889-98. PubMed ID: 11686691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analyses of retaining endo-(xylo)glucanases from plant and microbial sources using new chromogenic xylogluco-oligosaccharide aryl glycosides.
    Ibatullin FM; Baumann MJ; Greffe L; Brumer H
    Biochemistry; 2008 Jul; 47(29):7762-9. PubMed ID: 18627132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the transglucosylation reactions of cassava and Thai rosewood beta-glucosidases using 2-deoxy-2-fluoro-glycosyl-enzyme intermediates.
    Hommalai G; Chaiyen P; Svasti J
    Arch Biochem Biophys; 2005 Oct; 442(1):11-20. PubMed ID: 16139237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of two extracellular β-glucosidases produced from the cellulolytic fungus Aspergillus sp. YDJ216 and their potential applications for the hydrolysis of flavone glycosides.
    Oh JM; Lee JP; Baek SC; Kim SG; Jo YD; Kim J; Kim H
    Int J Biol Macromol; 2018 May; 111():595-603. PubMed ID: 29339289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosyl Oxocarbenium Ions: Structure, Conformation, Reactivity, and Interactions.
    Franconetti A; Ardá A; Asensio JL; Blériot Y; Thibaudeau S; Jiménez-Barbero J
    Acc Chem Res; 2021 Jun; 54(11):2552-2564. PubMed ID: 33930267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of GlvA from Bacillus subtilis: a detailed kinetic analysis of a 6-phospho-alpha-glucosidase from glycoside hydrolase family 4.
    Yip VL; Thompson J; Withers SG
    Biochemistry; 2007 Aug; 46(34):9840-52. PubMed ID: 17676871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of L-vancosamine-related glycosyl donors.
    Kitamura K; Shigeta M; Maezawa Y; Watanabe Y; Hsu DS; Ando Y; Matsumoto T; Suzuki K
    J Antibiot (Tokyo); 2013 Mar; 66(3):131-9. PubMed ID: 23423169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycosyl fluorides in enzymatic reactions.
    Williams SJ; Withers SG
    Carbohydr Res; 2000 Jul; 327(1-2):27-46. PubMed ID: 10968675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Experimental Evidence in Support of Glycosylation Mechanisms at the S
    Adero PO; Amarasekara H; Wen P; Bohé L; Crich D
    Chem Rev; 2018 Sep; 118(17):8242-8284. PubMed ID: 29846062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A propos of glycosyl cations and the mechanism of chemical glycosylation; the current state of the art.
    Bohé L; Crich D
    Carbohydr Res; 2015 Feb; 403():48-59. PubMed ID: 25108484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel beta-galactosidase capable of glycosyl transfer from Enterobacter agglomerans B1.
    Lu L; Xiao M; Xu X; Li Z; Li Y
    Biochem Biophys Res Commun; 2007 Apr; 356(1):78-84. PubMed ID: 17336932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zirconium-mediated SN2' substitution of allylic ethers: regio- and stereospecific formation of protected allylic amines.
    Lalic G; Blum SA; Bergman RG
    J Am Chem Soc; 2005 Dec; 127(48):16790-1. PubMed ID: 16316217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation and stability of oxocarbenium ions from glycosides.
    Denekamp C; Sandlers Y
    J Mass Spectrom; 2005 Aug; 40(8):1055-63. PubMed ID: 15971294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New Glycosylation Donors for the Highly Efficient Construction of Glycosidic Linkages.
    Hu Y; Yu K; Shi LL; Liu L; Sui JJ; Liu DY; Xiong B; Sun JS
    J Am Chem Soc; 2017 Sep; 139(36):12736-12744. PubMed ID: 28835100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical and kinetic analysis of the GH3 family beta-xylosidase from Aspergillus awamori X-100.
    Eneyskaya EV; Ivanen DR; Bobrov KS; Isaeva-Ivanova LS; Shabalin KA; Savel'ev AN; Golubev AM; Kulminskaya AA
    Arch Biochem Biophys; 2007 Jan; 457(2):225-34. PubMed ID: 17145041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.