These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 28737500)

  • 1. Quantum transport across van der Waals domain walls in bilayer graphene.
    Abdullah HM; Van Duppen B; Zarenia M; Bahlouli H; Peeters FM
    J Phys Condens Matter; 2017 Oct; 29(42):425303. PubMed ID: 28737500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topological valley transport at bilayer graphene domain walls.
    Ju L; Shi Z; Nair N; Lv Y; Jin C; Velasco J; Ojeda-Aristizabal C; Bechtel HA; Martin MC; Zettl A; Analytis J; Wang F
    Nature; 2015 Apr; 520(7549):650-5. PubMed ID: 25901686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soliton-dependent plasmon reflection at bilayer graphene domain walls.
    Jiang L; Shi Z; Zeng B; Wang S; Kang JH; Joshi T; Jin C; Ju L; Kim J; Lyu T; Shen YR; Crommie M; Gao HJ; Wang F
    Nat Mater; 2016 Aug; 15(8):840-4. PubMed ID: 27240109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seebeck Coefficient of a Single van der Waals Junction in Twisted Bilayer Graphene.
    Mahapatra PS; Sarkar K; Krishnamurthy HR; Mukerjee S; Ghosh A
    Nano Lett; 2017 Nov; 17(11):6822-6827. PubMed ID: 28841026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. van der Waals Graphene Kirigami Heterostructure for Strain-Controlled Thermal Transparency.
    Gao Y; Xu B
    ACS Nano; 2018 Nov; 12(11):11254-11262. PubMed ID: 30427663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Giant Quantum Hall Plateau in Graphene Coupled to an InSe van der Waals Crystal.
    Kudrynskyi ZR; Bhuiyan MA; Makarovsky O; Greener JDG; Vdovin EE; Kovalyuk ZD; Cao Y; Mishchenko A; Novoselov KS; Beton PH; Eaves L; Patanè A
    Phys Rev Lett; 2017 Oct; 119(15):157701. PubMed ID: 29077458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain Modulation by van der Waals Coupling in Bilayer Transition Metal Dichalcogenide.
    Zhao X; Ding Z; Chen J; Dan J; Poh SM; Fu W; Pennycook SJ; Zhou W; Loh KP
    ACS Nano; 2018 Feb; 12(2):1940-1948. PubMed ID: 29385335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlayer Interactions in van der Waals Heterostructures: Electron and Phonon Properties.
    Le NB; Huan TD; Woods LM
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6286-92. PubMed ID: 26885874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. van der Waals screening by single-layer graphene and molybdenum disulfide.
    Tsoi S; Dev P; Friedman AL; Stine R; Robinson JT; Reinecke TL; Sheehan PE
    ACS Nano; 2014 Dec; 8(12):12410-7. PubMed ID: 25412420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soliton-Dependent Electronic Transport across Bilayer Graphene Domain Wall.
    Jiang L; Wang S; Zhao S; Crommie M; Wang F
    Nano Lett; 2020 Aug; 20(8):5936-5942. PubMed ID: 32589430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limits of Coherency and Strain Transfer in Flexible 2D van der Waals Heterostructures: Formation of Strain Solitons and Interlayer Debonding.
    Kumar H; Dong L; Shenoy VB
    Sci Rep; 2016 Feb; 6():21516. PubMed ID: 26867496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Transport Detected by Strong Proximity Interaction at a Graphene-WS2 van der Waals Interface.
    O'Farrell EC; Avsar A; Tan JY; Eda G; Özyilmaz B
    Nano Lett; 2015 Sep; 15(9):5682-8. PubMed ID: 26258760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation.
    Liu B; Baimova JA; Reddy CD; Law AW; Dmitriev SV; Wu H; Zhou K
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18180-8. PubMed ID: 25308778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative interplay of van der Waals forces and quantum nuclear effects on adsorption: H at graphene and at coronene.
    Davidson ER; Klimeš J; Alfè D; Michaelides A
    ACS Nano; 2014 Oct; 8(10):9905-13. PubMed ID: 25300825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon Reflections by Topological Electronic Boundaries in Bilayer Graphene.
    Jiang BY; Ni GX; Addison Z; Shi JK; Liu X; Zhao SYF; Kim P; Mele EJ; Basov DN; Fogler MM
    Nano Lett; 2017 Nov; 17(11):7080-7085. PubMed ID: 28967761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical screening of the van der Waals interaction between graphene layers.
    Dappe YJ; Bolcatto PG; Ortega J; Flores F
    J Phys Condens Matter; 2012 Oct; 24(42):424208. PubMed ID: 23032606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Van der Waals Epitaxy of Two-Dimensional MoS2-Graphene Heterostructures in Ultrahigh Vacuum.
    Miwa JA; Dendzik M; Grønborg SS; Bianchi M; Lauritsen JV; Hofmann P; Ulstrup S
    ACS Nano; 2015 Jun; 9(6):6502-10. PubMed ID: 26039108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable band gaps in graphene/GaN van der Waals heterostructures.
    Huang L; Yue Q; Kang J; Li Y; Li J
    J Phys Condens Matter; 2014 Jul; 26(29):295304. PubMed ID: 24981081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial coupling in rotational monolayer and bilayer graphene on Ru(0001) from first principles.
    Wang B; Bocquet ML
    Nanoscale; 2012 Aug; 4(15):4687-93. PubMed ID: 22735164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio studies of coherent spin transport in Fe-hBN/graphene van der Waals multilayers.
    Ukpong AM
    J Phys Condens Matter; 2017 Jul; 29(28):285302. PubMed ID: 28531091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.