These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
499 related articles for article (PubMed ID: 28737701)
1. Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering. You F; Eames BF; Chen X Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28737701 [TBL] [Abstract][Full Text] [Related]
2. Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. Zhuang P; Ng WL; An J; Chua CK; Tan LP PLoS One; 2019; 14(6):e0216776. PubMed ID: 31188827 [TBL] [Abstract][Full Text] [Related]
3. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
4. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Yang J; Zhang YS; Yue K; Khademhosseini A Acta Biomater; 2017 Jul; 57():1-25. PubMed ID: 28088667 [TBL] [Abstract][Full Text] [Related]
5. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
6. Role of temperature on bio-printability of gelatin methacryloyl bioink in two-step cross-linking strategy for tissue engineering applications. Janmaleki M; Liu J; Kamkar M; Azarmanesh M; Sundararaj U; Nezhad AS Biomed Mater; 2020 Dec; 16(1):015021. PubMed ID: 33325382 [TBL] [Abstract][Full Text] [Related]
7. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications Suntornnond R; Ng WL; Huang X; Yeow CHE; Yeong WY J Mater Chem B; 2022 Aug; 10(31):5989-6000. PubMed ID: 35876487 [TBL] [Abstract][Full Text] [Related]
9. 3D bioprinting of tyramine modified hydrogels under visible light for osteochondral interface. Senturk E; Bilici C; Afghah F; Khan Z; Celik S; Wu C; Koc B Biofabrication; 2023 Jun; 15(3):. PubMed ID: 37201519 [TBL] [Abstract][Full Text] [Related]
10. Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces. Diloksumpan P; de Ruijter M; Castilho M; Gbureck U; Vermonden T; van Weeren PR; Malda J; Levato R Biofabrication; 2020 Feb; 12(2):025014. PubMed ID: 31918421 [TBL] [Abstract][Full Text] [Related]
11. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
12. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Mouser VH; Abbadessa A; Levato R; Hennink WE; Vermonden T; Gawlitta D; Malda J Biofabrication; 2017 Mar; 9(1):015026. PubMed ID: 28229956 [TBL] [Abstract][Full Text] [Related]
13. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Rastogi P; Kandasubramanian B Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105 [TBL] [Abstract][Full Text] [Related]
14. Silk fibroin reactive inks for 3D printing crypt-like structures. Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975 [TBL] [Abstract][Full Text] [Related]
15. Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration. Mouser VHM; Levato R; Bonassar LJ; D'Lima DD; Grande DA; Klein TJ; Saris DBF; Zenobi-Wong M; Gawlitta D; Malda J Cartilage; 2017 Oct; 8(4):327-340. PubMed ID: 28934880 [TBL] [Abstract][Full Text] [Related]
16. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications. Teixeira MC; Lameirinhas NS; Carvalho JPF; Silvestre AJD; Vilela C; Freire CSR Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743006 [TBL] [Abstract][Full Text] [Related]
17. 3D bioprinting of complex channels within cell-laden hydrogels. Ji S; Almeida E; Guvendiren M Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327 [TBL] [Abstract][Full Text] [Related]
18. Optimization of Freeform Reversible Embedding of Suspended Hydrogel Microspheres for Substantially Improved Three-Dimensional Bioprinting Capabilities. Wu CA; Zhu Y; Venkatesh A; Stark CJ; Lee SH; Woo YJ Tissue Eng Part C Methods; 2023 Mar; 29(3):85-94. PubMed ID: 36719778 [TBL] [Abstract][Full Text] [Related]
19. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review. Lee JM; Yeong WY Adv Healthc Mater; 2016 Nov; 5(22):2856-2865. PubMed ID: 27767258 [TBL] [Abstract][Full Text] [Related]
20. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]