BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28737788)

  • 1. A multiscale agent-based framework integrated with a constraint-based metabolic network model of cancer for simulating avascular tumor growth.
    Ghadiri M; Heidari M; Marashi SA; Mousavi SH
    Mol Biosyst; 2017 Aug; 13(9):1888-1897. PubMed ID: 28737788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic reprogramming dynamics in tumor spheroids: Insights from a multicellular, multiscale model.
    Roy M; Finley SD
    PLoS Comput Biol; 2019 Jun; 15(6):e1007053. PubMed ID: 31185009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models.
    Di Filippo M; Colombo R; Damiani C; Pescini D; Gaglio D; Vanoni M; Alberghina L; Mauri G
    Comput Biol Chem; 2016 Jun; 62():60-9. PubMed ID: 27085310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction and validation of a constraint-based metabolic network model for bone marrow-derived mesenchymal stem cells.
    Fouladiha H; Marashi SA; Shokrgozar MA
    Cell Prolif; 2015 Aug; 48(4):475-85. PubMed ID: 26132591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction and validation of avascular tumor growth pattern in different metabolic conditions using
    Heidari M; Kabiri M
    J Bioinform Comput Biol; 2021 Oct; 19(5):2150024. PubMed ID: 34538226
    [No Abstract]   [Full Text] [Related]  

  • 7. A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect.
    Damiani C; Colombo R; Gaglio D; Mastroianni F; Pescini D; Westerhoff HV; Mauri G; Vanoni M; Alberghina L
    PLoS Comput Biol; 2017 Sep; 13(9):e1005758. PubMed ID: 28957320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks.
    Hoppe A; Hoffmann S; Holzhütter HG
    BMC Syst Biol; 2007 Jun; 1():23. PubMed ID: 17543097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux prediction in cancer cells with altered substrate uptake.
    Schwartz JM; Barber M; Soons Z
    Biochem Soc Trans; 2015 Dec; 43(6):1177-81. PubMed ID: 26614657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction: Cancer Gene Networks.
    Clarke R
    Methods Mol Biol; 2017; 1513():1-9. PubMed ID: 27807826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An algorithm for the reduction of genome-scale metabolic network models to meaningful core models.
    Erdrich P; Steuer R; Klamt S
    BMC Syst Biol; 2015 Aug; 9():48. PubMed ID: 26286864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling microbial metabolic rewiring during growth in a complex medium.
    Fondi M; Bosi E; Presta L; Natoli D; Fani R
    BMC Genomics; 2016 Nov; 17(1):970. PubMed ID: 27881075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of a generic metabolic network model of cancer cells.
    Hadi M; Marashi SA
    Mol Biosyst; 2014 Nov; 10(11):3014-21. PubMed ID: 25196995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid multiscale modeling and prediction of cancer cell behavior.
    Zangooei MH; Habibi J
    PLoS One; 2017; 12(8):e0183810. PubMed ID: 28846712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic concepts and principles of stoichiometric modeling of metabolic networks.
    Maarleveld TR; Khandelwal RA; Olivier BG; Teusink B; Bruggeman FJ
    Biotechnol J; 2013 Sep; 8(9):997-1008. PubMed ID: 23893965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An advanced discrete state-discrete event multiscale simulation model of the response of a solid tumor to chemotherapy: Mimicking a clinical study.
    Stamatakos GS; Kolokotroni EA; Dionysiou DD; Georgiadi ECh; Desmedt C
    J Theor Biol; 2010 Sep; 266(1):124-39. PubMed ID: 20515697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors.
    Espinoza I; Peschke P; Karger CP
    Med Phys; 2015 Jan; 42(1):90-102. PubMed ID: 25563250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying metabolic flux adaptations in cancer through integrated experimental-computational approaches.
    Lagziel S; Lee WD; Shlomi T
    BMC Biol; 2019 Jul; 17(1):51. PubMed ID: 31272436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating intracellular dynamics using CompuCell3D and Bionetsolver: applications to multiscale modelling of cancer cell growth and invasion.
    Andasari V; Roper RT; Swat MH; Chaplain MA
    PLoS One; 2012; 7(3):e33726. PubMed ID: 22461894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The MONGOOSE Rational Arithmetic Toolbox.
    Le C; Chindelevitch L
    Methods Mol Biol; 2018; 1716():77-99. PubMed ID: 29222749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.