BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28737802)

  • 1. Accurate prediction of energetic properties of ionic liquid clusters using a fragment-based quantum mechanical method.
    Liu J; He X
    Phys Chem Chem Phys; 2017 Aug; 19(31):20657-20666. PubMed ID: 28737802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment Quantum Mechanical Method for Large-Sized Ion-Water Clusters.
    Liu J; Qi LW; Zhang JZH; He X
    J Chem Theory Comput; 2017 May; 13(5):2021-2034. PubMed ID: 28379695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatically embedded generalized molecular fractionation with conjugate caps method for full quantum mechanical calculation of protein energy.
    Wang X; Liu J; Zhang JZ; He X
    J Phys Chem A; 2013 Aug; 117(32):7149-61. PubMed ID: 23452268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method.
    Jin X; Zhang JZ; He X
    J Phys Chem A; 2017 Mar; 121(12):2503-2514. PubMed ID: 28264557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Excited-State Properties of Oligoacene Crystals Using Fragment-Based Quantum Mechanical Method.
    Liu J; Sun H; Glover WJ; He X
    J Phys Chem A; 2019 Jul; 123(26):5407-5417. PubMed ID: 31187994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment-Based Quantum Mechanical Calculation of Excited-State Properties of Fluorescent RNAs.
    Shen C; Wang X; He X
    Front Chem; 2021; 9():801062. PubMed ID: 35004616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
    Wang B; Yang KR; Xu X; Isegawa M; Leverentz HR; Truhlar DG
    Acc Chem Res; 2014 Sep; 47(9):2731-8. PubMed ID: 24841937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved fragment-based quantum mechanical method for calculation of electrostatic solvation energy of proteins.
    Jia X; Wang X; Liu J; Zhang JZ; Mei Y; He X
    J Chem Phys; 2013 Dec; 139(21):214104. PubMed ID: 24320361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment-based quantum mechanical approach to biomolecules, molecular clusters, molecular crystals and liquids.
    Liu J; He X
    Phys Chem Chem Phys; 2020 Jun; 22(22):12341-12367. PubMed ID: 32459230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction of the structure and vibrational spectra of ionic liquid clusters with the generalized energy-based fragmentation approach: critical role of ion-pair-based fragmentation.
    Li Y; Yuan D; Wang Q; Li W; Li S
    Phys Chem Chem Phys; 2018 May; 20(19):13547-13557. PubMed ID: 29726875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel SCS-IL-MP2 and SOS-IL-MP2 Methods for Accurate Energetics of Large-Scale Ionic Liquid Clusters.
    Rigby J; Barrera Acevedo S; Izgorodina EI
    J Chem Theory Comput; 2015 Aug; 11(8):3610-6. PubMed ID: 26574444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular tailoring approach: a route for ab initio treatment of large clusters.
    Sahu N; Gadre SR
    Acc Chem Res; 2014 Sep; 47(9):2739-47. PubMed ID: 24798296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Prediction of Aggregation-Induced Emission: A Full Quantum Mechanical Approach to the Optical Spectra.
    Zhang W; Liu J; Jin X; Gu X; Zeng XC; He X; Li H
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11550-11555. PubMed ID: 32167638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embedded correlated wavefunction schemes: theory and applications.
    Libisch F; Huang C; Carter EA
    Acc Chem Res; 2014 Sep; 47(9):2768-75. PubMed ID: 24873211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis.
    Titmuss SJ; Cummins PL; Rendell AP; Bliznyuk AA; Gready JE
    J Comput Chem; 2002 Nov; 23(14):1314-22. PubMed ID: 12214314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids.
    Zhang Y; Maginn EJ
    J Phys Chem B; 2012 Aug; 116(33):10036-48. PubMed ID: 22852554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of the Electrostatically Embedded Many-Body Expansion to Microsolvation of Ammonia in Water Clusters.
    Sorkin A; Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2008 May; 4(5):683-8. PubMed ID: 26621082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
    Dahlke EE; Truhlar DG
    J Chem Theory Comput; 2007 Jan; 3(1):46-53. PubMed ID: 26627150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.