These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28737931)

  • 21. Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures.
    Li C; Iqbal M; Lin J; Luo X; Jiang B; Malgras V; Wu KC; Kim J; Yamauchi Y
    Acc Chem Res; 2018 Aug; 51(8):1764-1773. PubMed ID: 29984987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Review of Experimentally Informed Micromechanical Modeling of Nanoporous Metals: From Structural Descriptors to Predictive Structure-Property Relationships.
    Richert C; Huber N
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
    Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y
    ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metallic molybdenum disulfide nanosheet-based electrochemical actuators.
    Acerce M; Akdoğan EK; Chhowalla M
    Nature; 2017 Sep; 549(7672):370-373. PubMed ID: 28854166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality.
    Fujita T
    Sci Technol Adv Mater; 2017; 18(1):724-740. PubMed ID: 29057026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchical Nanoporous Sn/SnO
    Gurgul M; Lytvynenko AS; Jarosz M; Gawlak K; Sulka GD; Zaraska L
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32110900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-High Actuation Stress Polymer Actuators as Light-Driven Artificial Muscles.
    Bhatti MRA; Bilotti E; Zhang H; Varghese S; Verpaalen RCP; Schenning APHJ; Bastiaansen CWM; Peijs T
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33210-33218. PubMed ID: 32580542
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon nanotube and graphene-based bioinspired electrochemical actuators.
    Kong L; Chen W
    Adv Mater; 2014 Feb; 26(7):1025-43. PubMed ID: 24338697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced electro-catalytic performance of Pd-based hierarchical nanoporous structures fabricated by micropatterning and dealloying of Pd-Ni-P metallic glass.
    Wang S; Li H; Lin H; Wu K
    Nanotechnology; 2020 Apr; 31(15):155301. PubMed ID: 31891935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring the nanostructures of electrochemical actuators for fast response and large deformation.
    Ji L; Yu Y; Deng Q; Shen S
    Nanoscale; 2020 Aug; 12(29):15643-15651. PubMed ID: 32558873
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hardening of Nanoporous Au Induced by Exposure to Different Gaseous Environments.
    Pia G; Sogne E; Falqui A; Delogu F
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon nanotube actuators.
    Baughman RH; Cui C; Zakhidov AA; Iqbal Z; Barisci JN; Spinks GM; Wallace GG; Mazzoldi A; De Rossi D ; Rinzler AG; Jaschinski O; Roth S; Kertesz M
    Science; 1999 May; 284(5418):1340-4. PubMed ID: 10334985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A flexible metallic actuator using reduced graphene oxide as a multifunctional component.
    Meng J; Mu J; Hou C; Zhang Q; Li Y; Wang H
    Nanoscale; 2017 Sep; 9(35):12963-12968. PubMed ID: 28832042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchically Arranged Helical Fiber Actuators Derived from Commercial Cloth.
    Gong J; Lin H; Dunlop JWC; Yuan J
    Adv Mater; 2017 Apr; 29(16):. PubMed ID: 28218811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Beating Thermal Coarsening in Nanoporous Materials via High-Entropy Design.
    Joo SH; Bae JW; Park WY; Shimada Y; Wada T; Kim HS; Takeuchi A; Konno TJ; Kato H; Okulov IV
    Adv Mater; 2020 Feb; 32(6):e1906160. PubMed ID: 31799755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer-Metal Composites with Nanodispersed Metal Electrodes.
    Wang HS; Cho J; Song DS; Jang JH; Jho JY; Park JH
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21998-22005. PubMed ID: 28593763
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organic Semiconductor Nanotubes for Electrochemical Devices.
    Eslamian M; Mirab F; Raghunathan VK; Majd S; Abidian MR
    Adv Funct Mater; 2021 Dec; 31(49):. PubMed ID: 34924917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward digitally controlled catalyst architectures: Hierarchical nanoporous gold via 3D printing.
    Zhu C; Qi Z; Beck VA; Luneau M; Lattimer J; Chen W; Worsley MA; Ye J; Duoss EB; Spadaccini CM; Friend CM; Biener J
    Sci Adv; 2018 Aug; 4(8):eaas9459. PubMed ID: 30182056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.