These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28737940)

  • 1. Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion.
    Oyen D; Fenwick RB; Aoto PC; Stanfield RL; Wilson IA; Dyson HJ; Wright PE
    J Am Chem Soc; 2017 Aug; 139(32):11233-11240. PubMed ID: 28737940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway.
    Oyen D; Fenwick RB; Stanfield RL; Dyson HJ; Wright PE
    J Am Chem Soc; 2015 Jul; 137(29):9459-68. PubMed ID: 26147643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1373-8. PubMed ID: 20080605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence.
    Sawaya MR; Kraut J
    Biochemistry; 1997 Jan; 36(3):586-603. PubMed ID: 9012674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle.
    Venkitakrishnan RP; Zaborowski E; McElheny D; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2004 Dec; 43(51):16046-55. PubMed ID: 15609999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Active Site Loop Dynamics in Mediating Ligand Release from
    Singh A; Fenwick RB; Dyson HJ; Wright PE
    Biochemistry; 2021 Sep; 60(35):2663-2671. PubMed ID: 34428034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamic energy landscape of dihydrofolate reductase catalysis.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Science; 2006 Sep; 313(5793):1638-42. PubMed ID: 16973882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase catalysis.
    Boehr DD; Dyson HJ; Wright PE
    Biochemistry; 2008 Sep; 47(35):9227-33. PubMed ID: 18690714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional role of a mobile loop of Escherichia coli dihydrofolate reductase in transition-state stabilization.
    Li L; Falzone CJ; Wright PE; Benkovic SJ
    Biochemistry; 1992 Sep; 31(34):7826-33. PubMed ID: 1510968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-pressure protein crystal structure analysis of Escherichia coli dihydrofolate reductase complexed with folate and NADP
    Nagae T; Yamada H; Watanabe N
    Acta Crystallogr D Struct Biol; 2018 Sep; 74(Pt 9):895-905. PubMed ID: 30198899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Envisioning the loop movements and rotation of the two subdomains of dihydrofolate reductase by elastic normal mode analysis.
    Luo J; Bruice TC
    J Biomol Struct Dyn; 2009 Dec; 27(3):245-58. PubMed ID: 19795909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational selection and induced changes along the catalytic cycle of Escherichia coli dihydrofolate reductase.
    Weikl TR; Boehr DD
    Proteins; 2012 Oct; 80(10):2369-83. PubMed ID: 22641560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnostic chemical shift markers for loop conformation and substrate and cofactor binding in dihydrofolate reductase complexes.
    Osborne MJ; Venkitakrishnan RP; Dyson HJ; Wright PE
    Protein Sci; 2003 Oct; 12(10):2230-8. PubMed ID: 14500880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic mechanism of the reaction catalyzed by dihydrofolate reductase from Escherichia coli.
    Stone SR; Morrison JF
    Biochemistry; 1982 Aug; 21(16):3757-65. PubMed ID: 6753919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase.
    Duff MR; Chopra S; Strader MB; Agarwal PK; Howell EE
    Biochemistry; 2016 Jan; 55(1):133-45. PubMed ID: 26637016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the conserved active site residue tryptophan-24 of human dihydrofolate reductase as revealed by mutagenesis.
    Beard WA; Appleman JR; Huang SM; Delcamp TJ; Freisheim JH; Blakley RL
    Biochemistry; 1991 Feb; 30(5):1432-40. PubMed ID: 1991124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of water in the catalytic cycle of E. coli dihydrofolate reductase.
    Shrimpton P; Allemann RK
    Protein Sci; 2002 Jun; 11(6):1442-51. PubMed ID: 12021443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational change of the methionine 20 loop of Escherichia coli dihydrofolate reductase modulates pKa of the bound dihydrofolate.
    Khavrutskii IV; Price DJ; Lee J; Brooks CL
    Protein Sci; 2007 Jun; 16(6):1087-100. PubMed ID: 17473015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.