BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

707 related articles for article (PubMed ID: 28738066)

  • 1. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish.
    Voldoire E; Brunet F; Naville M; Volff JN; Galiana D
    PLoS One; 2017; 12(7):e0180936. PubMed ID: 28738066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapidly evolving fish genomes and teleost diversity.
    Ravi V; Venkatesh B
    Curr Opin Genet Dev; 2008 Dec; 18(6):544-50. PubMed ID: 19095434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex Genes Are Preferentially Retained After Whole-Genome Duplication in Teleost Fish.
    Guo B
    J Mol Evol; 2017 Jun; 84(5-6):253-258. PubMed ID: 28492966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates.
    Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA
    Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.
    Parmar MB; Wright JM
    Genome; 2013 Nov; 56(11):691-701. PubMed ID: 24299108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of pigment synthesis pathways by gene and genome duplication in fish.
    Braasch I; Schartl M; Volff JN
    BMC Evol Biol; 2007 May; 7():74. PubMed ID: 17498288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling.
    Inoue J; Sato Y; Sinclair R; Tsukamoto K; Nishida M
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14918-23. PubMed ID: 26578810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct functions of two olfactory marker protein genes derived from teleost-specific whole genome duplication.
    Suzuki H; Nikaido M; Hagino-Yamagishi K; Okada N
    BMC Evol Biol; 2015 Nov; 15():245. PubMed ID: 26555542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide identification and characterization of 14-3-3 genes in fishes.
    Zhang K; Huang Y; Shi Q
    Gene; 2021 Jul; 791():145721. PubMed ID: 34010706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-genome duplication and the functional diversification of teleost fish hemoglobins.
    Opazo JC; Butts GT; Nery MF; Storz JF; Hoffmann FG
    Mol Biol Evol; 2013 Jan; 30(1):140-53. PubMed ID: 22949522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications.
    Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A
    BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event?
    Douard V; Brunet F; Boussau B; Ahrens-Fath I; Vlaeminck-Guillem V; Haendler B; Laudet V; Guiguen Y
    BMC Evol Biol; 2008 Dec; 8():336. PubMed ID: 19094205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication.
    Davesne D; Friedman M; Schmitt AD; Fernandez V; Carnevale G; Ahlberg PE; Sanchez S; Benson RBJ
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase.
    Lin CJ; Maugars G; Lafont AG; Jeng SR; Wu GC; Dufour S; Chang CF
    Gen Comp Endocrinol; 2020 May; 291():113395. PubMed ID: 31981691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.
    Pasquier J; Cabau C; Nguyen T; Jouanno E; Severac D; Braasch I; Journot L; Pontarotti P; Klopp C; Postlethwait JH; Guiguen Y; Bobe J
    BMC Genomics; 2016 May; 17():368. PubMed ID: 27189481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid-binding protein genes of the ancient, air-breathing, ray-finned fish, spotted gar (Lepisosteus oculatus).
    Venkatachalam AB; Fontenot Q; Farrara A; Wright JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2018 Mar; 25():19-25. PubMed ID: 29126085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in Vertebrates.
    Lorin T; Brunet FG; Laudet V; Volff JN
    G3 (Bethesda); 2018 May; 8(5):1795-1806. PubMed ID: 29599177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication.
    Amores A; Catchen J; Ferrara A; Fontenot Q; Postlethwait JH
    Genetics; 2011 Aug; 188(4):799-808. PubMed ID: 21828280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.