These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28738154)

  • 1. Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy.
    Lu Y; Geng J; Wang K; Zhang W; Ding W; Zhang Z; Xie S; Dai H; Chen FR; Sui M
    ACS Nano; 2017 Aug; 11(8):8018-8025. PubMed ID: 28738154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant Radiolytic Dissolution Rates of Aqueous Ceria Observed in Situ by Liquid-Cell TEM.
    Asghar MSA; Inkson BJ; Möbus G
    Chemphyschem; 2017 May; 18(10):1247-1251. PubMed ID: 28276618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring dynamic surface processes during silicate mineral (wollastonite) dissolution with liquid cell TEM.
    Leonard DN; Hellmann R
    J Microsc; 2017 Mar; 265(3):358-371. PubMed ID: 27918627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid-Phase Transmission Electron Microscopy.
    Couasnon T; Fritsch B; Jank MPM; Blukis R; Hutzler A; Benning LG
    Adv Sci (Weinh); 2023 Sep; 10(25):e2301904. PubMed ID: 37439408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the mechanisms of anisotropic dissolution in metal oxides by applying radiolysis simulations to liquid-phase TEM.
    Liu L; Sassi M; Zhang X; Nakouzi E; Kovarik L; Xue S; Jin B; Rosso KM; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2101243120. PubMed ID: 37252978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constant-rate dissolution of InAs nanowires in radiolytic water observed by in situ liquid cell TEM.
    Sun M; Li X; Tang Z; Wei X; Chen Q
    Nanoscale; 2018 Nov; 10(42):19733-19741. PubMed ID: 30198038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution of metal oxides in task-specific ionic liquid.
    Richter J; Ruck M
    RSC Adv; 2019 Sep; 9(51):29699-29710. PubMed ID: 35531549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angstrom-resolved real-time dissection of electrochemically active noble metal interfaces.
    Shrestha BR; Baimpos T; Raman S; Valtiner M
    ACS Nano; 2014 Jun; 8(6):5979-87. PubMed ID: 24826945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observing the Evolution of Metal Oxides in Liquids.
    Kang Z; Zhang J; Guo X; Mao Y; Yang Z; Kankala RK; Zhao P; Chen AZ
    Small; 2023 Dec; 19(52):e2304781. PubMed ID: 37635095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the oxidative etching induced dissolution of palladium nanocrystals in solution by liquid cell transmission electron microscopy.
    Jiang Y; Zhu G; Dong G; Lin F; Zhang H; Yuan J; Zhang Z; Jin C
    Micron; 2017 Jun; 97():22-28. PubMed ID: 28334630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium Electrodeposition Dynamics in Aprotic Electrolyte Observed in Situ via Transmission Electron Microscopy.
    Leenheer AJ; Jungjohann KL; Zavadil KR; Sullivan JP; Harris CT
    ACS Nano; 2015 Apr; 9(4):4379-89. PubMed ID: 25785517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200.
    Arnold RG; DiChristina TJ; Hoffmann MR
    Biotechnol Bioeng; 1988 Oct; 32(9):1081-96. PubMed ID: 18587827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
    Akita T; Kohyama M; Haruta M
    Acc Chem Res; 2013 Aug; 46(8):1773-82. PubMed ID: 23777292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution.
    Grimaud A; Diaz-Morales O; Han B; Hong WT; Lee YL; Giordano L; Stoerzinger KA; Koper MTM; Shao-Horn Y
    Nat Chem; 2017 Jan; 9(5):457-465. PubMed ID: 28430191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance and Challenges of Electrochemical in Situ Liquid Cell Electron Microscopy for Energy Conversion Research.
    Hodnik N; Dehm G; Mayrhofer KJ
    Acc Chem Res; 2016 Sep; 49(9):2015-22. PubMed ID: 27541965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications.
    Kuang Q; Wang X; Jiang Z; Xie Z; Zheng L
    Acc Chem Res; 2014 Feb; 47(2):308-18. PubMed ID: 24341353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu
    Tang H; Xian H; He H; Wei J; Liu H; Zhu J; Zhu R
    Sci Total Environ; 2019 Jun; 668():602-616. PubMed ID: 30856570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.
    Kim K; Choi W; Hoffmann MR; Yoon HI; Park BK
    Environ Sci Technol; 2010 Jun; 44(11):4142-8. PubMed ID: 20446731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron Beam Effects on Oxide Thin Films-Structure and Electrical Property Correlations.
    Neelisetty KK; Mu X; Gutsch S; Vahl A; Molinari A; von Seggern F; Hansen M; Scherer T; Zacharias M; Kienle L; Chakravadhanula VK; Kübel C
    Microsc Microanal; 2019 Jun; 25(3):592-600. PubMed ID: 30829197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Analysis of Growth Behaviors of Cu
    Lin YH; Chen JY; Chen FC; Kuo MY; Hsu YJ; Wu WW
    Anal Chem; 2019 Aug; 91(15):9665-9672. PubMed ID: 31243950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.