These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28738157)

  • 21. Assessment of the Accuracy of the Bethe-Salpeter (BSE/GW) Oscillator Strengths.
    Jacquemin D; Duchemin I; Blondel A; Blase X
    J Chem Theory Comput; 2016 Aug; 12(8):3969-81. PubMed ID: 27403612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TD-DFT Assessment of Functionals for Optical 0-0 Transitions in Solvated Dyes.
    Jacquemin D; Planchat A; Adamo C; Mennucci B
    J Chem Theory Comput; 2012 Jul; 8(7):2359-72. PubMed ID: 26588969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of Functionals for TD-DFT Calculations of Singlet-Triplet Transitions.
    Jacquemin D; Perpète EA; Ciofini I; Adamo C
    J Chem Theory Comput; 2010 May; 6(5):1532-7. PubMed ID: 26615688
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TD-CI simulation of the electronic optical response of molecules in intense fields II: comparison of DFT functionals and EOM-CCSD.
    Sonk JA; Schlegel HB
    J Phys Chem A; 2011 Oct; 115(42):11832-40. PubMed ID: 21923137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies.
    Loos PF; Scemama A; Duchemin I; Jacquemin D; Blase X
    J Phys Chem Lett; 2020 May; 11(9):3536-3545. PubMed ID: 32298578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules.
    Loos PF; Lipparini F; Boggio-Pasqua M; Scemama A; Jacquemin D
    J Chem Theory Comput; 2020 Mar; 16(3):1711-1741. PubMed ID: 31986042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benchmarks for 0-0 transitions of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2 compared to high-resolution gas-phase data.
    Winter NO; Graf NK; Leutwyler S; Hättig C
    Phys Chem Chem Phys; 2013 May; 15(18):6623-30. PubMed ID: 23111753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio Bethe-Salpeter equation approach and the Tamm-Dancoff approximation.
    Rangel T; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2017 May; 146(19):194108. PubMed ID: 28527441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Excited states of ladder-type π-conjugated dyes with a joint SOS-CIS(D) and PCM-TD-DFT approach.
    Chibani S; Laurent AD; Le Guennic B; Jacquemin D
    J Phys Chem A; 2015 May; 119(21):5417-25. PubMed ID: 25522826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemically Accurate 0-0 Energies with Not-so-Accurate Excited State Geometries.
    Loos PF; Jacquemin D
    J Chem Theory Comput; 2019 Apr; 15(4):2481-2491. PubMed ID: 30802404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.
    Liu Y; Zhao J; Li F; Chen Z
    J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3.
    Schreiber M; Silva-Junior MR; Sauer SP; Thiel W
    J Chem Phys; 2008 Apr; 128(13):134110. PubMed ID: 18397056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical investigation of the energies and geometries of photoexcited uranyl(VI) ion: a comparison between wave-function theory and density functional theory.
    Réal F; Vallet V; Marian C; Wahlgren U
    J Chem Phys; 2007 Dec; 127(21):214302. PubMed ID: 18067352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the Performance of DFT Functionals for Excited-State Properties of Pyridine-Thiophene Oligomers.
    Mahato B; Panda AN
    J Phys Chem A; 2021 Jan; 125(1):115-125. PubMed ID: 33353306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions.
    Hedegård ED; Heiden F; Knecht S; Fromager E; Jensen HJ
    J Chem Phys; 2013 Nov; 139(18):184308. PubMed ID: 24320275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How accurate are TD-DFT excited-state geometries compared to DFT ground-state geometries?
    Wang J; Durbeej B
    J Comput Chem; 2020 Jul; 41(18):1718-1729. PubMed ID: 32323870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combining Renormalized Singles
    Li J; Golze D; Yang W
    J Chem Theory Comput; 2022 Nov; 18(11):6637-6645. PubMed ID: 36279250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of TD-DFT and CC2 Methods for the Calculation of Resonance Raman Intensities: Application to o-Nitrophenol.
    Guthmuller J
    J Chem Theory Comput; 2011 Apr; 7(4):1082-9. PubMed ID: 26606356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reference Energies for Cyclobutadiene: Automerization and Excited States.
    Monino E; Boggio-Pasqua M; Scemama A; Jacquemin D; Loos PF
    J Phys Chem A; 2022 Jul; 126(28):4664-4679. PubMed ID: 35820169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the relation between time-dependent and variational density functional theory approaches for the determination of excitation energies and transition moments.
    Ziegler T; Seth M; Krykunov M; Autschbach J; Wang F
    J Chem Phys; 2009 Apr; 130(15):154102. PubMed ID: 19388731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.