These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 28738160)

  • 41. Synergistic antiarrhythmic effect of combining inhibition of Ca²⁺-activated K⁺ (SK) channels and voltage-gated Na⁺ channels in an isolated heart model of atrial fibrillation.
    Kirchhoff JE; Diness JG; Sheykhzade M; Grunnet M; Jespersen T
    Heart Rhythm; 2015 Feb; 12(2):409-18. PubMed ID: 25496982
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Application of selective acetylcholine-sensitive K+ -channel blockade as a therapeutic strategy for atrial fibrillation].
    Hashimoto N
    Nihon Yakurigaku Zasshi; 2010 Aug; 136(2):77-82. PubMed ID: 20702965
    [No Abstract]   [Full Text] [Related]  

  • 43. The duration of pacing-induced atrial fibrillation is reduced in vivo by inhibition of small conductance Ca(2+)-activated K(+) channels.
    Skibsbye L; Diness JG; Sørensen US; Hansen RS; Grunnet M
    J Cardiovasc Pharmacol; 2011 Jun; 57(6):672-81. PubMed ID: 21394037
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel anti-arrhythmic drugs for atrial fibrillation management.
    Ehrlich JR; Nattel S; Hohnloser SH
    Curr Vasc Pharmacol; 2007 Jul; 5(3):185-95. PubMed ID: 17627562
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Non-channel drugs to prevent atrial fibrillation].
    Fazekas T; Liszkai G
    Orv Hetil; 2005 Nov; 146(45):2287-94. PubMed ID: 16304807
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system.
    Wiedmann F; Schmidt C; Lugenbiel P; Staudacher I; Rahm AK; Seyler C; Schweizer PA; Katus HA; Thomas D
    Clin Sci (Lond); 2016 May; 130(9):643-50. PubMed ID: 26993052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. I(Kur)/Kv1.5 channel blockers for the treatment of atrial fibrillation.
    Tamargo J; Caballero R; Gómez R; Delpón E
    Expert Opin Investig Drugs; 2009 Apr; 18(4):399-416. PubMed ID: 19335273
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ionic targets for drug therapy and atrial fibrillation-induced electrical remodeling: insights from a mathematical model.
    Courtemanche M; Ramirez RJ; Nattel S
    Cardiovasc Res; 1999 May; 42(2):477-89. PubMed ID: 10533583
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Can inhibition of IKur promote atrial fibrillation?
    Burashnikov A; Antzelevitch C
    Heart Rhythm; 2008 Sep; 5(9):1304-9. PubMed ID: 18774108
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Voltage- and time-dependent block by perhexiline of K+ currents in human atrium and in cells expressing a Kv1.5-type cloned channel.
    Rampe D; Wang Z; Fermini B; Wible B; Dage RC; Nattel S
    J Pharmacol Exp Ther; 1995 Jul; 274(1):444-9. PubMed ID: 7616429
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibitory effects of aprindine on the delayed rectifier K+ current and the muscarinic acetylcholine receptor-operated K+ current in guinea-pig atrial cells.
    Ohmoto-Sekine Y; Uemura H; Tamagawa M; Nakaya H
    Br J Pharmacol; 1999 Feb; 126(3):751-61. PubMed ID: 10188988
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inward rectifier potassium currents as a target for atrial fibrillation therapy.
    Ehrlich JR
    J Cardiovasc Pharmacol; 2008 Aug; 52(2):129-35. PubMed ID: 18670367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Atrial effects of the novel K(+)-channel-blocker AVE0118 in anesthetized pigs.
    Wirth KJ; Paehler T; Rosenstein B; Knobloch K; Maier T; Frenzel J; Brendel J; Busch AE; Bleich M
    Cardiovasc Res; 2003 Nov; 60(2):298-306. PubMed ID: 14613859
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Medical management of atrial fibrillation: future directions.
    Page RL
    Heart Rhythm; 2007 Mar; 4(3 Suppl):S91-4. PubMed ID: 17336894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses.
    Haugaard MM; Hesselkilde EZ; Pehrson S; Carstensen H; Flethøj M; Præstegaard KF; Sørensen US; Diness JG; Grunnet M; Buhl R; Jespersen T
    Heart Rhythm; 2015 Apr; 12(4):825-35. PubMed ID: 25542425
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Populations of in silico myocytes and tissues reveal synergy of multiatrial-predominant K
    Ni H; Fogli Iseppe A; Giles WR; Narayan SM; Zhang H; Edwards AG; Morotti S; Grandi E
    Br J Pharmacol; 2020 Oct; 177(19):4497-4515. PubMed ID: 32667679
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of antiarrhythmic drugs on small conductance calcium - activated potassium channels.
    Simó-Vicens R; Sauter DRP; Grunnet M; Diness JG; Bentzen BH
    Eur J Pharmacol; 2017 May; 803():118-123. PubMed ID: 28322838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pharmacological modulations of cardiac ultra-rapid and slowly activating delayed rectifier currents: potential antiarrhythmic approaches.
    Islam MA
    Recent Pat Cardiovasc Drug Discov; 2010 Jan; 5(1):33-46. PubMed ID: 19929823
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antiarrhythmic therapy in atrial fibrillation.
    Ravens U
    Pharmacol Ther; 2010 Oct; 128(1):129-45. PubMed ID: 20624425
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vernakalant activates human cardiac K(2P)17.1 background K(+) channels.
    Seyler C; Schweizer PA; Zitron E; Katus HA; Thomas D
    Biochem Biophys Res Commun; 2014 Aug; 451(3):415-20. PubMed ID: 25108155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.