These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 28738174)
61. [Influence of Mirabilis jalapa Linn. Growth on the Microbial Community and Petroleum Hydrocarbon Degradation in Petroleum Contaminated Saline-alkali Soil]. Jiao HH; Cui BJ; Wu SH; Bai ZH; Huang ZB Huan Jing Ke Xue; 2015 Sep; 36(9):3471-8. PubMed ID: 26717712 [TBL] [Abstract][Full Text] [Related]
62. Use of plant materials for the bioremediation of soil from an industrial site. Nunes DAD; Salgado AM; Gama-Rodrigues EFD; Taketani RG; Cunha CDD; Sérvulo EFC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(6):650-660. PubMed ID: 32067565 [TBL] [Abstract][Full Text] [Related]
63. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site. Blyth W; Shahsavari E; Morrison PD; Ball AS J Environ Manage; 2015 Oct; 162():30-6. PubMed ID: 26217887 [TBL] [Abstract][Full Text] [Related]
64. Field note: phytoremediation of petroleum sludge contaminated field using sedge species, Cyperus rotundus (Linn.) and Cyperus brevifolius (Rottb.) Hassk. Basumatary B; Saikia R; Das HC; Bordoloi S Int J Phytoremediation; 2013; 15(9):877-88. PubMed ID: 23819282 [TBL] [Abstract][Full Text] [Related]
65. [An off site petroleum-contaminated soil bioremediation technology: soil compositing in windrow]. Jiang C; Sun T; Li P; Zhang C; Zhang H; Ma X; Yao D; Yang G Ying Yong Sheng Tai Xue Bao; 2001 Apr; 12(2):279-82. PubMed ID: 11757381 [TBL] [Abstract][Full Text] [Related]
66. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media. Wu M; Chen L; Tian Y; Ding Y; Dick WA Environ Pollut; 2013 Jul; 178():152-8. PubMed ID: 23570783 [TBL] [Abstract][Full Text] [Related]
67. Mobilisation of bacteria in soils by electro-osmosis. Suni S; Romantschuk M FEMS Microbiol Ecol; 2004 Jul; 49(1):51-7. PubMed ID: 19712383 [TBL] [Abstract][Full Text] [Related]
68. Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. Fan MY; Xie RJ; Qin G Environ Technol; 2014; 35(1-4):391-9. PubMed ID: 24600879 [TBL] [Abstract][Full Text] [Related]
69. Microbial community responses to soil parameters and their effects on petroleum degradation during bio-electrokinetic remediation. Fan R; Ma W; Zhang H Sci Total Environ; 2020 Dec; 748():142463. PubMed ID: 33113694 [TBL] [Abstract][Full Text] [Related]
70. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site. Akbari A; Ghoshal S J Hazard Mater; 2014 Sep; 280():595-602. PubMed ID: 25218258 [TBL] [Abstract][Full Text] [Related]
71. Effects of natural organic matters on bioavailability of petroleum hydrocarbons in soil-water environments. Chen CH; Liu PG; Whang LM Chemosphere; 2019 Oct; 233():843-851. PubMed ID: 31340410 [TBL] [Abstract][Full Text] [Related]
72. Remediation of resins-contaminated soil by the combination of electrokinetic and bioremediation processes. Ma J; Zhang Q; Chen F; Zhu Q; Wang Y; Liu G Environ Pollut; 2020 May; 260():114047. PubMed ID: 32028193 [TBL] [Abstract][Full Text] [Related]
73. Archaeal community structure along a gradient of petroleum contamination in saline-alkali soil. Wang X; Han Z; Bai Z; Tang J; Ma A; He J; Zhuang G J Environ Sci (China); 2011; 23(11):1858-64. PubMed ID: 22432311 [TBL] [Abstract][Full Text] [Related]
74. Evaluation of microbial population and functional genes during the bioremediation of petroleum-contaminated soil as an effective monitoring approach. Shahi A; Aydin S; Ince B; Ince O Ecotoxicol Environ Saf; 2016 Mar; 125():153-60. PubMed ID: 26685788 [TBL] [Abstract][Full Text] [Related]
75. Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil. Safdari MS; Kariminia HR; Rahmati M; Fazlollahi F; Polasko A; Mahendra S; Wilding WV; Fletcher TH J Hazard Mater; 2018 Jan; 342():270-278. PubMed ID: 28843796 [TBL] [Abstract][Full Text] [Related]
76. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Wang X; Cai Z; Zhou Q; Zhang Z; Chen C Biotechnol Bioeng; 2012 Feb; 109(2):426-33. PubMed ID: 22006588 [TBL] [Abstract][Full Text] [Related]
77. Bio-electrocatalytic remediation of hydrocarbons contaminated soil with integrated natural attenuation and chemical oxidant. Chandrasekhar K; Velvizhi G; Venkata Mohan S Chemosphere; 2021 Oct; 280():130649. PubMed ID: 33975233 [TBL] [Abstract][Full Text] [Related]
78. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Kim S; Krajmalnik-Brown R; Kim JO; Chung J Sci Total Environ; 2014 Nov; 497-498():250-259. PubMed ID: 25129160 [TBL] [Abstract][Full Text] [Related]
79. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. Bastida F; Jehmlich N; Lima K; Morris BEL; Richnow HH; Hernández T; von Bergen M; García C J Proteomics; 2016 Mar; 135():162-169. PubMed ID: 26225916 [TBL] [Abstract][Full Text] [Related]
80. Changes in liquid water alter nutrient bioavailability and gas diffusion in frozen antarctic soils contaminated with petroleum hydrocarbons. Harvey AN; Snape I; Siciliano SD Environ Toxicol Chem; 2012 Feb; 31(2):395-401. PubMed ID: 22102214 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]